Menu Close

Author: Tinku Tara

what-is-the-decomposition-into-cycles-with-disjoints-support-of-c-k-where-c-123-n-

Question Number 205551 by aba last updated on 24/Mar/24 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{decomposition}\:\mathrm{into}\:\mathrm{cycles} \\ $$$$\mathrm{with}\:\mathrm{disjoints}\:\mathrm{support}\:\mathrm{of}\:\mathrm{c}^{\mathrm{k}} ,\:\mathrm{where}\:\mathrm{c}=\left(\mathrm{123}…\mathrm{n}\right)\:? \\ $$ Answered by TheHoneyCat last updated on 01/Apr/24 $$\mathrm{please}\:\mathrm{don}'\mathrm{t}\:\mathrm{re}−\mathrm{post}\:\mathrm{your}\:\mathrm{questions}. \\ $$$$\mathrm{especially}\:\mathrm{a}\:\mathrm{single}\:\mathrm{day}\:\mathrm{after}……

0-pi-2-sin-2-4-sin-2-d-

Question Number 205558 by universe last updated on 24/Mar/24 $$\:\:\:\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{4}\theta\:}{\mathrm{sin}^{\mathrm{2}} \theta\:}{d}\theta\:\:=\:\:\:? \\ $$ Answered by Berbere last updated on 24/Mar/24 $${sin}^{\mathrm{2}} \left(\mathrm{4}{x}\right)=\mathrm{4}{sin}^{\mathrm{2}}…

Question-math-analysis-X-d-is-a-metric-space-and-p-n-n-1-is-a-sequence-in-X-p-n-n-1-is-cauchy-if-and-only-if-lim-N-diam-E-N-0-where-E-N-p-N-

Question Number 205559 by mnjuly1970 last updated on 24/Mar/24 $$ \\ $$$$\:\:\:{Question}.\:\left({math}\:{analysis}\right) \\ $$$$\:\:\left({X}\:,{d}\:\right)\:{is}\:{a}\:{metric}\:{space}\:{and} \\ $$$$\:\:\left({p}_{{n}} \right)_{{n}=\mathrm{1}} ^{\infty} \:{is}\:{a}\:{sequence}\:{in}\:{X}. \\ $$$$\:\:\:\left({p}_{{n}} \right)_{{n}=\mathrm{1}} ^{\:\infty} {is}\:{cauchy}\:{if}\:{and}\:\:{only}\:{if} \\…

Find-lim-n-0-1-n-x-n-e-x-2-dx-

Question Number 205534 by hardmath last updated on 23/Mar/24 $$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{n}\:\mathrm{x}^{\boldsymbol{\mathrm{n}}} \:\mathrm{e}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:=\:? \\ $$ Answered by Mathspace last updated…

Let-x-A-x-R-And-card-A-gt-card-N-Prove-that-card-A-gt-card-N-

Question Number 205528 by hardmath last updated on 23/Mar/24 $$\mathrm{Let}\:\:\:\forall\mathrm{x}\:\in\:\mathrm{A}\:\rightarrow\:\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{And}\:\:\:\mathrm{card}\left(\mathrm{A}\right)\:>\:\mathrm{card}\:\mathrm{N} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{card}\left(\mathrm{A}'\right)\:>\:\mathrm{card}\:\mathrm{N} \\ $$ Answered by Berbere last updated on 24/Mar/24…