Menu Close

Author: Tinku Tara

Question-213920

Question Number 213920 by ajfour last updated on 21/Nov/24 Commented by ajfour last updated on 21/Nov/24 $${Can}\:{we}\:{find}\:{at}\:{what}\:{speed}\:{does}\:{point} \\ $$$${P}\:{approach}\:{the}\:{ground}\:{just}\:{before} \\ $$$${hitting}\:{the}\:{ground}\:{if}\:{released}\:{at}\:{say} \\ $$$${the}\:{lower}\:{edge}\:{at}\:\mathrm{45}°\:{to}\:{horizontal}. \\ $$$${The}\:{radius}\:{of}\:{semi}-{disc}\:{is}\:{r},\:{mass}\:{m}.…

Question-213923

Question Number 213923 by luj last updated on 21/Nov/24 Answered by MATHEMATICSAM last updated on 21/Nov/24 $${x}^{\mathrm{32}} \:=\:\mathrm{2}^{{x}} \\ $$$${or}\:\mathrm{32ln}\mid{x}\mid\:=\:{x}\mathrm{ln2} \\ $$$$\mathrm{For}\:{x}\:>\:\mathrm{0} \\ $$$${or}\:\frac{\mathrm{ln}{x}}{{x}}\:=\:\frac{\mathrm{ln2}}{\mathrm{32}}\: \\…

Find-amplitude-period-maximum-and-minimum-value-for-function-f-x-6-tan-1-5-x-8-

Question Number 213887 by efronzo1 last updated on 20/Nov/24 $$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-213890

Question Number 213890 by Tawa11 last updated on 20/Nov/24 Answered by mr W last updated on 21/Nov/24 $${h}={u}\:\mathrm{sin}\:\theta\:{t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${t}=\frac{{u}\:\mathrm{sin}\:\theta}{{g}}\left(\mathrm{1}\pm\sqrt{\mathrm{1}−\frac{\mathrm{2}{gh}}{{u}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta}}\right) \\ $$$$\:\:=\frac{\mathrm{45}\:\mathrm{sin}\:\mathrm{52}°}{\mathrm{9}.\mathrm{81}}\left(\mathrm{1}\pm\sqrt{\mathrm{1}−\frac{\mathrm{2}×\mathrm{9}.\mathrm{81}×\mathrm{12}}{\mathrm{45}^{\mathrm{2}}…

Question-213871

Question Number 213871 by 073 last updated on 19/Nov/24 Commented by Frix last updated on 20/Nov/24 $$\mathrm{Elliptic}\:\mathrm{Integral}: \\ $$$$\mathrm{4}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x}\:+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{x}}\:{dx}\:=\mathrm{4}{a}\mathrm{E}\:\frac{{a}^{\mathrm{2}}…

Question-213861

Question Number 213861 by BaliramKumar last updated on 19/Nov/24 Answered by A5T last updated on 19/Nov/24 $${cotA}+{cotB}=\frac{\mathrm{1}}{{tanA}}+\frac{\mathrm{1}}{{tanB}}=\frac{{p}}{{tanAtanB}}={q} \\ $$$$\Rightarrow{tanAtanB}=\frac{{p}}{{q}} \\ $$$${cot}\left({A}+{B}\right)=\frac{\mathrm{1}}{{tan}\left({A}+{B}\right)}=\frac{\mathrm{1}−{tanAtanB}}{{tanA}+{tanB}}=\frac{\mathrm{1}−\frac{{p}}{{q}}}{{p}} \\ $$$$\Rightarrow{cot}\left({A}+{B}\right)=\frac{{q}−{p}}{{pq}} \\ $$…