Menu Close

Author: Tinku Tara

lim-x-x-1-x-where-is-a-fractional-part-of-x-

Question Number 205174 by universe last updated on 12/Mar/24 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{x}^{\mathrm{1}/{x}} \right\}\:=\:?\:{where}\:\left\{.\right\}\:{is}\:{a}\:{fractional}\:{part}\:{of}\:{x} \\ $$ Answered by lepuissantcedricjunior last updated on 12/Mar/24 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\boldsymbol{{x}}\right)^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} =\infty^{\mathrm{0}} =\boldsymbol{\mathrm{F}{I}}…

Question-205175

Question Number 205175 by BaliramKumar last updated on 12/Mar/24 Answered by Rasheed.Sindhi last updated on 12/Mar/24 $$\mathrm{413283P759387} \\ $$$$\bullet{Divide}\:{the}\:{number}\:{in}\:{groups}\:{of}\:\mathrm{3} \\ $$$${from}\:{right}\:{side} \\ $$$$\mathrm{4},\mathrm{132},\mathrm{83P},\mathrm{759},\mathrm{387} \\ $$$$\bullet{Apply}\:{subtraction}\:{and}\:{addition}…

If-x-y-z-gt-0-then-in-ABC-holds-yz-h-a-2-R-2-4F-2-x-y-z-2-

Question Number 205203 by hardmath last updated on 12/Mar/24 $$\mathrm{If}\:\:\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{in}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Sigma\:\:\frac{\mathrm{yz}}{\mathrm{h}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} }\:\:\leqslant\:\:\frac{\mathrm{R}^{\mathrm{2}} }{\mathrm{4F}^{\mathrm{2}} }\:\:\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Find-the-determinant-determinant-1-x-2-3-n-1-2-x-3-n-1-2-3-x-n-1-2-3-n-x-

Question Number 205164 by depressiveshrek last updated on 11/Mar/24 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{1}−{x}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}−{x}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}−{x}}&{\ldots}&{{n}}\\{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}−{x}}\end{vmatrix} \\ $$ Answered by aleks041103 last updated on 12/Mar/24 $${By}\:{subtracting}\:{the}\:{first}\:{row}\:{from}\:{all}\:{other} \\ $$$$\begin{vmatrix}{\mathrm{1}−{x}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}−{x}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}−{x}}&{\ldots}&{{n}}\\{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}−{x}}\end{vmatrix}= \\…