Menu Close

Author: Tinku Tara

Question-205134

Question Number 205134 by universe last updated on 09/Mar/24 Answered by pi314 last updated on 09/Mar/24 $${nx}={y} \\ $$$$\Leftrightarrow{A}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{n}} \frac{{f}\left(\frac{{y}}{{n}}\right)}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}{dy}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{n}}…

Solve-lim-x-y-0-0-1-cos-10xy-3-y-sin-22x-Ans-5-66-Step-by-step-please-

Question Number 205114 by 2kdw last updated on 09/Mar/24 $${Solve}: \\ $$$$ \\ $$$$\:\:{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \frac{\mathrm{1}−{cos}\left(\sqrt{\mathrm{10}{xy}}\right)}{\mathrm{3}.{y}.{sin}\left(\mathrm{22}{x}\right)} \\ $$$$ \\ $$$${Ans}.:\:\frac{\mathrm{5}}{\mathrm{66}} \\ $$$${Step}\:{by}\:{step},\:{please}! \\ $$ Answered by…

given-that-there-are-real-constant-a-b-c-d-such-the-identity-x-2-2xy-y-2-ax-by-2-cx-dy-2-holds-for-all-x-y-R-this-implies-a-5-b-1-c-0-lt-lt-1-

Question Number 205101 by universe last updated on 08/Mar/24 $$\:\:\mathrm{given}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{real}\:\mathrm{constant}\:\mathrm{a},\mathrm{b},\:\mathrm{c},\:\mathrm{d} \\ $$$$\:\:\mathrm{such}\:\mathrm{the}\:\mathrm{identity} \\ $$$$\:\lambda\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{ax}+\mathrm{by}\right)^{\mathrm{2}} +\left(\mathrm{cx}+\mathrm{dy}\right)^{\mathrm{2}} \:\mathrm{holds} \\ $$$$\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\:\in\:\mathbb{R}\:\mathrm{this}\:\mathrm{implies} \\ $$$$\left({a}\right)\:\lambda=−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\lambda\geqslant\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\mathrm{0}<\lambda<\mathrm{1} \\ $$$$\:\left({d}\right)\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\lambda\in\mathbb{R} \\…

Question-205092

Question Number 205092 by BaliramKumar last updated on 08/Mar/24 Answered by A5T last updated on 08/Mar/24 $${n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}−{x}^{\mathrm{2}} =\mathrm{0} \\ $$$${n}=\frac{−\mathrm{19}\underset{−} {+}\sqrt{\mathrm{361}−\mathrm{4}\left(\mathrm{92}−{x}^{\mathrm{2}} \right)}}{\mathrm{2}}=\frac{−\mathrm{19}\underset{−} {+}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{7}}}{\mathrm{2}}…

Given-A-B-a-b-A-C-b-c-B-C-b-d-then-A-C-A-B-B-C-

Question Number 205070 by dimentri last updated on 07/Mar/24 $$\:\:\:\mathrm{Given}\:\begin{cases}{\mathrm{A}\cap\mathrm{B}=\:\left\{\:\mathrm{a},\:\mathrm{b}\right\}}\\{\mathrm{A}\cap\mathrm{C}\:=\:\left\{\:\mathrm{b},\:\mathrm{c}\right\}\:}\\{\mathrm{B}\cap\mathrm{C}=\:\left\{\:\mathrm{b}\:,\mathrm{d}\:\right\}}\end{cases} \\ $$$$\:\:\:\:\mathrm{then}\:\left(\mathrm{A}\cap\mathrm{C}\right)\:+\:\left(\mathrm{A}\cap\mathrm{B}\right)\:+\:\left(\mathrm{B}\cap\mathrm{C}\right) \\ $$ Commented by JDamian last updated on 07/Mar/24 $${Do}\:{you}\:{mean}\:\:\left(\mathrm{A}\cap\mathrm{C}\right)\:\cup\:\left(\mathrm{A}\cap\mathrm{B}\right)\:\cup\:\left(\mathrm{B}\cap\mathrm{C}\right)\:\:? \\ $$ Commented…