Question Number 204978 by SANOGO last updated on 04/Mar/24 Answered by witcher3 last updated on 04/Mar/24 $$\mathrm{Soit}\:\mathrm{U}_{\mathrm{n}} ^{\mathrm{k}} \:\mathrm{une}\:\mathrm{suite}\:\mathrm{de}\:\mathrm{cauchy}\:\:\mathrm{Dans}\:\mathrm{C}_{\mathrm{0}} \\ $$$$\forall\mathrm{k}\:\:\mathrm{U}_{\mathrm{n}} ^{\mathrm{k}} \in\mathrm{C}_{} ^{\mathbb{N}} ;\underset{\mathrm{n}\rightarrow\infty}…
Question Number 204979 by Simurdiera last updated on 04/Mar/24 $${factorizar} \\ $$$${x}^{\mathrm{4}} \:+\:\mathrm{1} \\ $$ Answered by Skabetix last updated on 04/Mar/24 $$=\left({x}−{x}_{\mathrm{0}} \right)\left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}}…
Question Number 204970 by mr W last updated on 04/Mar/24 Commented by mr W last updated on 04/Mar/24 $${the}\:{vertices}\:{of}\:{triangle}\:{PQR}\:{lie}\:{on} \\ $$$${each}\:{of}\:{the}\:{three}\:{touching}\:{circles} \\ $$$${with}\:{radii}\:{a},\:{b},\:{c}\:{respectively}. \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:{the}…
Question Number 204961 by naka3546 last updated on 04/Mar/24 $$\int\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cot}\:\mathrm{3}{x}}\:{dx}\:=\:\: \\ $$ Answered by TonyCWX08 last updated on 04/Mar/24 $${let}\:{t}\:=\:\mathrm{3}{x} \\ $$$${dt}\:=\:\mathrm{3}\:{dx} \\ $$$$ \\…
Question Number 204963 by TonyCWX08 last updated on 04/Mar/24 $${x}^{\mathrm{2}} +{z}^{\mathrm{2}} ={y}^{\mathrm{2}} +{z}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204957 by CrispyXYZ last updated on 03/Mar/24 $$\mathrm{2}×\mathrm{2}\:\mathrm{matrix}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\boldsymbol{\mathrm{B}}\:\mathrm{satisfy}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{AB}}+\boldsymbol{\mathrm{A}}=\boldsymbol{\mathrm{BA}}+\boldsymbol{\mathrm{B}}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right)^{\mathrm{2}} =\boldsymbol{\mathrm{O}}. \\ $$ Answered by Rajpurohith last updated on 04/Mar/24 $${Need}\:{not}\:{hold}\:{true}!…
Question Number 204948 by TonyCWX08 last updated on 03/Mar/24 $${prove}\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\sqrt[{\mathrm{3}}]{{abc}}\geqslant\mathrm{4} \\ $$$${if} \\ $$$${ab}+{bc}+{ac}=\mathrm{3} \\ $$ Commented by TonyCWX08 last…
Question Number 204947 by tri26112004 last updated on 03/Mar/24 $${f}'\left({x}\right)+\mathrm{4}{x}−\mathrm{6}{x}.{e}^{{x}^{\mathrm{2}} −{f}\left({x}\right)−\mathrm{1}} =\mathrm{0} \\ $$$${f}\left({x}\right)=¿ \\ $$ Answered by mr W last updated on 03/Mar/24 $${let}\:{t}={x}^{\mathrm{2}}…
Question Number 204926 by hardmath last updated on 02/Mar/24 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\bigtriangleup\mathrm{ABC} \\ $$$$\left(\mathrm{m}_{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{c}}} \right)^{\mathrm{2}} \:\geqslant\:\mathrm{9}\sqrt{\mathrm{3}}\:\mathrm{F} \\ $$ Commented by A5T last updated on 02/Mar/24…
Question Number 204920 by cortano12 last updated on 02/Mar/24 $$\:\:\:\:\:\mathrm{16}^{\mathrm{y}+\mathrm{x}^{\mathrm{2}} } \:+\:\mathrm{16}^{\mathrm{y}^{\mathrm{2}} +\mathrm{x}} \:=\:\mathrm{1}\: \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{y}\:=? \\ $$ Answered by witcher3 last updated on 02/Mar/24…