Menu Close

Author: Tinku Tara

Question-204921

Question Number 204921 by mathlove last updated on 02/Mar/24 Answered by Frix last updated on 02/Mar/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{{x}+\mathrm{3}}+\sqrt{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{1}}{dx}= \\ $$$$=\left[\frac{\left({x}+\mathrm{3}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left({x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\right]_{\mathrm{0}}…

Question-204944

Question Number 204944 by mr W last updated on 02/Mar/24 Commented by mr W last updated on 03/Mar/24 $${the}\:{distances}\:{from}\:{a}\:{point}\:{inside} \\ $$$${a}\:{triangle}\:{to}\:{its}\:{vertexes}\:{are}\:{p},\:{q},\:{r} \\ $$$${respectively}.\:{find}\:{the}\:{maximum} \\ $$$${area}\:{of}\:{the}\:{triangle}\:{and}\:{its}\:{sides}.…

lim-n-r-1-n-n-2-r-n-2-r-

Question Number 204929 by universe last updated on 02/Mar/24 $$\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{{n}^{\mathrm{2}} −{r}}{{n}^{\mathrm{2}} +{r}}\:\:=\:\:? \\ $$ Answered by witcher3 last updated on 02/Mar/24 $$\underset{\mathrm{r}=\mathrm{1}}…

4-sin-30-tan-45-cosec-60-sec-30-cos-60-cot-45-1-2-1-2-3-2-3-1-2-1-v-3-2-3-4-2-3-4-3-2-3-2-3-3-3-

Question Number 204905 by Manishkumar last updated on 02/Mar/24 $$\mathrm{4}.\:\frac{\mathrm{sin}\:\mathrm{30}^{°} \:+\:\mathrm{tan}\:\mathrm{45}^{°} \:−\:\mathrm{cosec}\:\mathrm{60}^{°} }{\mathrm{sec}\:\mathrm{30}^{°} \:+\:\mathrm{cos}\:\mathrm{60}^{°} \:+\:\mathrm{cot}\:\mathrm{45}^{°} } \\ $$$$ \\ $$$$=\:\frac{\mathrm{1}/\mathrm{2}\:+\:\mathrm{1}\:−\:\mathrm{2}/\sqrt{\mathrm{3}}}{\mathrm{2}/\sqrt{\mathrm{3}}\:+\:\mathrm{1}/\mathrm{2}\:+\:\mathrm{1}\:\:\mathrm{v}} \\ $$$$=\:\frac{\frac{\sqrt{\mathrm{3}}\:+\:\mathrm{2}\sqrt{\mathrm{3}}\:−\:\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{3}}}}{\frac{\mathrm{4}\:+\:\sqrt{\mathrm{3}}\:+\:\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{3}}}} \\ $$$$ \\…

lim-n-n-e-x-n-where-x-n-1-1-1-1-2-1-n-

Question Number 204900 by universe last updated on 01/Mar/24 $$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}!\left({e}−\mathrm{x}_{\mathrm{n}} \right)\:=\:? \\ $$$$\:\:\mathrm{where}\:\mathrm{x}_{\mathrm{n}\:} =\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+…+\frac{\mathrm{1}}{\mathrm{n}!} \\ $$ Commented by Frix last updated on 01/Mar/24 $${x}_{{n}}…