Question Number 204921 by mathlove last updated on 02/Mar/24 Answered by Frix last updated on 02/Mar/24 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{{x}+\mathrm{3}}+\sqrt{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{1}}{dx}= \\ $$$$=\left[\frac{\left({x}+\mathrm{3}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left({x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{3}}\right]_{\mathrm{0}}…
Question Number 204944 by mr W last updated on 02/Mar/24 Commented by mr W last updated on 03/Mar/24 $${the}\:{distances}\:{from}\:{a}\:{point}\:{inside} \\ $$$${a}\:{triangle}\:{to}\:{its}\:{vertexes}\:{are}\:{p},\:{q},\:{r} \\ $$$${respectively}.\:{find}\:{the}\:{maximum} \\ $$$${area}\:{of}\:{the}\:{triangle}\:{and}\:{its}\:{sides}.…
Question Number 204946 by 0547 last updated on 02/Mar/24 $$\mathrm{2}+\mathrm{6}{i}×\mathrm{5}+\mathrm{4}{j} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204941 by cortano12 last updated on 02/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204929 by universe last updated on 02/Mar/24 $$\:\:\:\:\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{{n}^{\mathrm{2}} −{r}}{{n}^{\mathrm{2}} +{r}}\:\:=\:\:? \\ $$ Answered by witcher3 last updated on 02/Mar/24 $$\underset{\mathrm{r}=\mathrm{1}}…
Question Number 204909 by mnjuly1970 last updated on 01/Mar/24 $$ \\ $$$$\:\:\:\:\:\:\:\Omega=\:\int_{\frac{\mathrm{1}}{{e}}} ^{\:{e}} \frac{\:{arctan}\left({x}\right)}{{x}}\:{dx}=? \\ $$ Answered by witcher3 last updated on 01/Mar/24 $$\mathrm{x}\rightarrow\frac{\mathrm{1}}{\mathrm{x}} \\…
Question Number 204910 by universe last updated on 01/Mar/24 Commented by witcher3 last updated on 02/Mar/24 $$\mathrm{is}\:\mathrm{This}\:\mathrm{correct}\:\mathrm{formes}? \\ $$ Answered by witcher3 last updated on…
Question Number 204905 by Manishkumar last updated on 02/Mar/24 $$\mathrm{4}.\:\frac{\mathrm{sin}\:\mathrm{30}^{°} \:+\:\mathrm{tan}\:\mathrm{45}^{°} \:−\:\mathrm{cosec}\:\mathrm{60}^{°} }{\mathrm{sec}\:\mathrm{30}^{°} \:+\:\mathrm{cos}\:\mathrm{60}^{°} \:+\:\mathrm{cot}\:\mathrm{45}^{°} } \\ $$$$ \\ $$$$=\:\frac{\mathrm{1}/\mathrm{2}\:+\:\mathrm{1}\:−\:\mathrm{2}/\sqrt{\mathrm{3}}}{\mathrm{2}/\sqrt{\mathrm{3}}\:+\:\mathrm{1}/\mathrm{2}\:+\:\mathrm{1}\:\:\mathrm{v}} \\ $$$$=\:\frac{\frac{\sqrt{\mathrm{3}}\:+\:\mathrm{2}\sqrt{\mathrm{3}}\:−\:\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{3}}}}{\frac{\mathrm{4}\:+\:\sqrt{\mathrm{3}}\:+\:\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{3}}}} \\ $$$$ \\…
Question Number 204916 by hardmath last updated on 01/Mar/24 $$ \\ $$How many axes of symmetry does an open angle have? Commented by mr W…
Question Number 204900 by universe last updated on 01/Mar/24 $$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}!\left({e}−\mathrm{x}_{\mathrm{n}} \right)\:=\:? \\ $$$$\:\:\mathrm{where}\:\mathrm{x}_{\mathrm{n}\:} =\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+…+\frac{\mathrm{1}}{\mathrm{n}!} \\ $$ Commented by Frix last updated on 01/Mar/24 $${x}_{{n}}…