Menu Close

Author: Tinku Tara

Let-f-1-R-be-a-differentiable-function-such-that-f-1-1-3-and-3-1-x-f-t-dt-x-f-x-x-3-3-x-1-find-tbe-value-of-f-e-

Question Number 204645 by cortano12 last updated on 24/Feb/24 $$\:\:\mathrm{Let}\:{f}\::\:\left[\:\bar {\mathrm{1}}\infty\right)\:\rightarrow\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{differentiable}\: \\ $$$$\:\mathrm{function}\:\mathrm{such}\:\mathrm{that}\:{f}\left(\mathrm{1}\right)=\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{and}\: \\ $$$$\:\mathrm{3}\underset{\mathrm{1}} {\overset{\mathrm{x}} {\int}}\:{f}\left({t}\right)\:{dt}\:=\:{x}\:{f}\left({x}\right)−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:,\mathrm{x}\in\left[\mathrm{1},\infty\right)\: \\ $$$$\:\mathrm{find}\:\mathrm{tbe}\:\mathrm{value}\:\mathrm{of}\:{f}\left({e}\right)\: \\ $$ Commented by universe…

Question-204647

Question Number 204647 by Engr_Jidda last updated on 24/Feb/24 Answered by Rasheed.Sindhi last updated on 24/Feb/24 $$\left(\frac{{x}}{\mathrm{2}}\right)^{\frac{{x}}{\mathrm{2}}−\mathrm{1}} =\mathrm{3}^{\mathrm{2}} \\ $$$$\Leftarrow\frac{{x}}{\mathrm{2}}=\mathrm{3}\:\wedge\:\frac{{x}}{\mathrm{2}}−\mathrm{1}=\mathrm{2}\Rightarrow{x}=\mathrm{6} \\ $$ Commented by Engr_Jidda…

f-x-1-1-x-1-1-a-ax-ax-8-a-gt-0-x-gt-0-prove-1-lt-f-x-lt-2-

Question Number 204640 by liuxinnan last updated on 24/Feb/24 $${f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}+\sqrt{\frac{{ax}}{{ax}+\mathrm{8}}} \\ $$$${a}>\mathrm{0}\:{x}>\mathrm{0} \\ $$$${prove}\:\mathrm{1}<{f}\left({x}\right)<\mathrm{2} \\ $$ Answered by lepuissantcedricjunior last updated on 26/Feb/24 $$\boldsymbol{{x}}>\mathrm{0}\:\boldsymbol{{a}}>\mathrm{0} \\…

Consider-point-A-inside-a-triangle-with-sides-3-4-and-5-if-d-is-the-sum-of-the-distances-of-this-point-from-the-sides-what-is-the-smallest-value-of-d-

Question Number 204657 by es last updated on 24/Feb/24 $${Consider}\:{point}\:{A}\:{inside}\:{a}\:{triangle} \\ $$$${with}\:{sides}\:\mathrm{3},\mathrm{4}\:{and}\:\mathrm{5}.\:{if}\:{d}\:\:{is}\:{the}\:{sum} \\ $$$$\:{of}\:{the}\:{distances}\:\:{of}\:{this}\:{point}\:{from} \\ $$$${the}\:{sides}.{what}\:{is}\:{the}\:{smallest} \\ $$$${value}\:{of}\:{d}? \\ $$$$ \\ $$ Answered by mr…

If-a-9-1-3-3-1-3-1-Find-4-a-a-6-

Question Number 204658 by hardmath last updated on 24/Feb/24 $$\mathrm{If}\:\:\:\mathrm{a}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{9}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{3}}\:+\:\mathrm{1} \\ $$$$\mathrm{Find}\:\:\:\left(\frac{\mathrm{4}\:−\:\mathrm{a}}{\mathrm{a}}\right)^{\mathrm{6}} =\:? \\ $$ Answered by Rasheed.Sindhi last updated on 24/Feb/24 $$\:\mathrm{a}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{9}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{3}}\:+\:\mathrm{1};\:\left(\frac{\mathrm{4}\:−\:\mathrm{a}}{\mathrm{a}}\right)^{\mathrm{6}} =\:? \\…

If-1-1-2-1-2-2-1-3-2-1-4-2-1-5-2-pi-2-6-then-1-1-2-1-3-2-1-5-2-

Question Number 204642 by BaliramKumar last updated on 24/Feb/24 $$\mathrm{If}\:\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }\:+\:………….\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\mathrm{then}\:\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }\:+\:………….\:=\:? \\ $$$$ \\ $$…

Question-204632

Question Number 204632 by mr W last updated on 23/Feb/24 Answered by witcher3 last updated on 23/Feb/24 $$\left.\mathrm{x}>\mathrm{1};\mathrm{x}=\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)};\mathrm{t}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right. \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)}+\frac{\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}−\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)}+\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{t}\right)}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{cauchy}\:\mathrm{shwartz}\:\left(\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{sin}\left(\mathrm{t}\right)}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{cos}\left(\mathrm{t}\right)}}\right)^{\mathrm{2}} \right)\left(\left(\sqrt{\mathrm{sin}\left(\mathrm{t}\right)}\right)^{\mathrm{2}}…