Menu Close

Author: Tinku Tara

Question-204517

Question Number 204517 by Lindemann last updated on 20/Feb/24 Answered by witcher3 last updated on 20/Feb/24 $$\left.=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)\right]_{−\mathrm{1}} ^{\mathrm{1}} +\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right).\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}._{=\mathrm{0}}…

Question-204505

Question Number 204505 by cherokeesay last updated on 19/Feb/24 Answered by mr W last updated on 19/Feb/24 $$\left[\sqrt{\left(\mathrm{2}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }−\mathrm{1}\right]^{\mathrm{2}} +\left(\mathrm{1}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left[\mathrm{2}\sqrt{\mathrm{1}−{r}}−\mathrm{1}\right]^{\mathrm{2}} =\mathrm{2}{r}−\mathrm{1}…

Given-that-I-R-x-2-y-2-5-2-dxdy-where-R-is-the-region-x-2-y-2-a-2-use-a-suitable-transformation-to-evaluate-I-

Question Number 204500 by DeArtist last updated on 19/Feb/24 $$\mathrm{Given}\:\mathrm{that}\:{I}\:=\:\int\int_{{R}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{5}}{\mathrm{2}}} {dxdy}\:\mathrm{where}\:{R} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{region}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\leqslant\:{a}^{\mathrm{2}} \\ $$$$\mathrm{use}\:\mathrm{a}\:\mathrm{suitable}\:\mathrm{transformation}\:\mathrm{to}\:\mathrm{evaluate}\:{I} \\ $$ Answered by witcher3…

1-Find-the-directional-derivative-of-F-x-y-z-2xy-z-2-at-the-point-2-1-1-in-a-direction-towards-3-1-1-in-what-direction-is-the-directional-derivative-maximum-what-is-the-value-of-this-ma

Question Number 204499 by DeArtist last updated on 19/Feb/24 $$\mathrm{1}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{directional}\:\mathrm{derivative}\:\mathrm{of}\: \\ $$$${F}\left({x},{y},{z}\right)\:=\:\mathrm{2}{xy}−{z}^{\mathrm{2}} \:\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{2},−\mathrm{1},\mathrm{1}\right)\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{direction}\:\mathrm{towards}\:\left(\mathrm{3},\mathrm{1},−\mathrm{1}\right)\: \\ $$$$\mathrm{in}\:\mathrm{what}\:\mathrm{direction}\:\mathrm{is}\:\mathrm{the}\:\mathrm{directional}\:\mathrm{derivative} \\ $$$$\mathrm{maximum}?\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{this}\:\mathrm{maximum}? \\ $$ Answered by TonyCWX08 last…