Question Number 204262 by DEGWE last updated on 10/Feb/24 Answered by Frix last updated on 10/Feb/24 $$\mathrm{Charles}−\mathrm{Ange}\:\mathrm{LAISANT}\:\left(\mathrm{1905}\right): \\ $$$$\int{f}^{−\mathrm{1}} \left({x}\right){dx}={xf}^{−\mathrm{1}} \left({x}\right)−\left({F}\circ{f}^{−\mathrm{1}} \right)\left({x}\right)+{C} \\ $$$$\mathrm{with}\:{F}\left({x}\right)=\int{f}\left({x}\right){dx} \\…
Question Number 204273 by mustafazaheen last updated on 10/Feb/24 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{4}}\right)} } \\ $$$$\mathrm{Domain}\:\mathrm{f}\left(\mathrm{x}\right)\:=? \\ $$ Answered by Mathspace last updated on 11/Feb/24 $${f}\left({x}\right)=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} }=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{−{ln}\mathrm{2}} }…
Question Number 204236 by Panav last updated on 09/Feb/24 $$\boldsymbol{{Helpful}}\:\boldsymbol{{questionfor}}\:\boldsymbol{{Olympiads}},\:\boldsymbol{{Find}}\:\boldsymbol{{Sol}}^{\boldsymbol{{n}}} . \\ $$ Commented by Panav last updated on 09/Feb/24 Answered by JDamian last updated…
Question Number 204233 by Perelman last updated on 09/Feb/24 Answered by Frix last updated on 09/Feb/24 $$\int\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\frac{\mathrm{3}}{\mathrm{4}}} +\mathrm{1}}{dx}\:\overset{{t}={x}^{\frac{\mathrm{1}}{\mathrm{4}}} } {=}\:\mathrm{4}\int\frac{{t}^{\mathrm{5}} }{{t}^{\mathrm{3}} +\mathrm{1}}{dt}= \\ $$$$=\mathrm{4}\int{t}^{\mathrm{2}}…
Question Number 204244 by pticantor last updated on 09/Feb/24 Answered by pticantor last updated on 09/Feb/24 $${please}\:{can}\:{some}\:{one}\:{help}\:{me}\:{to}\:{solve}\:{question}\:\mathrm{2}−{b}\: \\ $$$${for}\:{this}\:{exercise}? \\ $$ Answered by witcher3 last…
Question Number 204246 by Tutormalvis last updated on 09/Feb/24 $$\mathrm{l}\rfloor\infty \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 204230 by Davidtim last updated on 09/Feb/24 $${what}\:{does}\:{mean}\:{that}\:{we}\:{say}\:{C}^{°} ={F}^{°} \\ $$$${in}\:−\mathrm{40}? \\ $$ Commented by mr W last updated on 10/Feb/24 $${generally}\:{the}\:{temperature}\:{value}\:{in} \\…
Question Number 204226 by MathedUp last updated on 09/Feb/24 $$\mathrm{God}\:\mathrm{Damn}\:\mathrm{it}\:\mathrm{why}\:\mathrm{my}\:\mathrm{Integration}\:\mathrm{Test}\:\mathrm{is}\:\mathrm{Wrong}? \\ $$$$\underset{{h}=\mathrm{0}} {\overset{\infty} {\sum}}\:{h}\centerdot{J}_{\nu} \left({h}\right)\:\mathrm{is}\:\mathrm{Conv}?? \\ $$$$\mathrm{Laplace}\:\mathrm{transform}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}} \centerdot \\ $$$$\mathrm{We}\:\mathrm{already}\:\mathrm{Know}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}} {J}_{\nu}…
Question Number 204227 by abdomath last updated on 09/Feb/24 Answered by AST last updated on 09/Feb/24 $${Let}\:{y}={f}\left({x}\right)\Rightarrow{x}^{\mathrm{2}} {y}^{\mathrm{3}} =\left({x}+{y}\right)^{\mathrm{5}} \Rightarrow{x}^{\mathrm{2}} \left[{f}\left({x}\right)\right]^{\mathrm{3}} =\left({x}+{f}\left({x}\right)\right)^{\mathrm{5}} \\ $$$$\Rightarrow\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} \left[{f}\left({x}\right)\right]^{\mathrm{3}}…
Question Number 204218 by mnjuly1970 last updated on 08/Feb/24 Answered by AST last updated on 08/Feb/24 $$\begin{pmatrix}{\mathrm{3}}&{\mathrm{2}}\\{\mathrm{4}}&{\mathrm{1}}\end{pmatrix}\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\begin{pmatrix}{\:{x}}\\{\:{y}}\end{pmatrix}=\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\Rightarrow\begin{pmatrix}{\mathrm{3}}&{\mathrm{2}}\\{\mathrm{4}}&{\mathrm{1}}\end{pmatrix}\begin{pmatrix}{{ax}+{by}}\\{{cx}+{dy}}\end{pmatrix}=\begin{pmatrix}{\left(\mathrm{3}{a}+\mathrm{2}{c}\right){x}+\left(\mathrm{3}{b}+\mathrm{2}{d}\right){y}}\\{\left(\mathrm{4}{a}+{c}\right){x}+\left(\mathrm{4}{b}+{d}\right){y}}\end{pmatrix} \\ $$$$\Rightarrow\begin{pmatrix}{\mathrm{3}{a}+\mathrm{2}{c}}&{\mathrm{3}{b}+\mathrm{2}{d}}\\{\mathrm{4}{a}+{c}}&{\mathrm{4}{b}+{d}}\end{pmatrix}=\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\Rightarrow\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}=\begin{pmatrix}{\frac{−\mathrm{1}}{\mathrm{5}}}&{\frac{\mathrm{2}}{\mathrm{5}}}\\{\frac{\mathrm{4}}{\mathrm{5}}}&{\frac{−\mathrm{3}}{\mathrm{5}}}\end{pmatrix} \\ $$$$\Rightarrow{A}^{−\mathrm{1}} =\mathrm{5}^{−\mathrm{1}} \begin{pmatrix}{−\mathrm{1}}&{\mathrm{2}}\\{\mathrm{4}}&{−\mathrm{3}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{3}}&{\mathrm{6}}\\{\mathrm{12}}&{−\mathrm{9}}\end{pmatrix}=\begin{pmatrix}{\mathrm{4}}&{\mathrm{6}}\\{\mathrm{5}}&{\mathrm{5}}\end{pmatrix}…