Menu Close

Author: Tinku Tara

Find-the-largest-value-of-the-non-negative-integer-p-for-which-lim-x-1-px-sin-x-1-p-x-sin-x-1-1-1-x-1-x-1-4-

Question Number 216077 by MATHEMATICSAM last updated on 27/Jan/25 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{non}\:\mathrm{negative} \\ $$$$\mathrm{integer}\:{p}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left\{\frac{−\:{px}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:+\:{p}}{{x}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:−\:\mathrm{1}}\right\}^{\frac{\mathrm{1}\:−\:{x}}{\mathrm{1}\:−\:\sqrt{{x}}}} \:=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$ Answered by mahdipoor last updated on 27/Jan/25…

Question-216105

Question Number 216105 by mr W last updated on 27/Jan/25 Answered by A5T last updated on 27/Jan/25 $$\mathrm{x}^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \Rightarrow\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{2}\underset{−}…

find-the-maximum-of-y-sin-x-sin-2x-

Question Number 216074 by CrispyXYZ last updated on 27/Jan/25 $$\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:{y}=\mid\mathrm{sin}\:{x}\mid+\mid\mathrm{sin}\:\mathrm{2}{x}\mid. \\ $$ Answered by efronzo1 last updated on 27/Jan/25 $$\:\mathrm{y}\:=\:\mid\mathrm{sin}\:\mathrm{x}\mid\:+\:\mathrm{2}\mid\mathrm{sin}\:\mathrm{x}\mid\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\:\mathrm{y}=\:\mid\mathrm{sin}\:\mathrm{x}\mid\:\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:\right) \\…

lim-x-0-sin-2-2x-cos-x-1-3-cos-x-1-4-

Question Number 216055 by efronzo1 last updated on 26/Jan/25 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}}\:=? \\ $$ Answered by golsendro last updated on 27/Jan/25 $$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4cos}\:^{\mathrm{2}} \mathrm{x}\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{x}}}…