Menu Close

Author: Tinku Tara

cos-x-3-sin-x-3-cos-x-3-sin-x-3-

Question Number 203935 by mathlove last updated on 02/Feb/24 $$\frac{{cos}\frac{{x}}{\mathrm{3}}+{sin}\:\frac{{x}}{\mathrm{3}}}{{cos}\:\frac{{x}}{\mathrm{3}}−{sin}\:\frac{{x}}{\mathrm{3}}}=? \\ $$ Answered by esmaeil last updated on 02/Feb/24 $$=\frac{\sqrt{\mathrm{2}}{sin}\left(\frac{{x}}{\mathrm{3}}+\frac{\pi}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}}{cos}\left(\frac{{x}}{\mathrm{3}}+\frac{\pi}{\mathrm{4}}\right)}={tan}\left(\frac{\pi}{\mathrm{4}}+\frac{{x}}{\mathrm{3}}\right) \\ $$ Answered by AST…

If-a-2-a-2-0-and-x-2-a-6-2a-4-a-2-then-find-x-IIT-JEE-based-question-Find-sol-n-

Question Number 203941 by Panav last updated on 02/Feb/24 $$\boldsymbol{{If}}\:\boldsymbol{{a}}^{\mathrm{2}\:} −\boldsymbol{{a}}+\mathrm{2}=\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{6}} +\mathrm{2}\boldsymbol{{a}}^{\mathrm{4}} +\boldsymbol{{a}}^{\mathrm{2}} \:\boldsymbol{{then}}\:\boldsymbol{{find}}\:\boldsymbol{{x}}? \\ $$$$\boldsymbol{{IIT}}−\boldsymbol{{JEE}}\:\boldsymbol{{based}}\:\boldsymbol{{question}}.\:\boldsymbol{{Find}}\:\boldsymbol{{sol}}^{\boldsymbol{{n}}} . \\ $$ Answered by Rasheed.Sindhi last updated…

Let-A-R-N-N-be-a-symmetric-positive-definite-matrix-and-b-R-N-a-vector-If-x-R-N-evaluate-the-integral-Z-A-b-e-1-2-x-T-Ax-b-T-x-dx-as-a-function-of-A-and-b-

Question Number 203900 by necx122 last updated on 01/Feb/24 $${Let}\:{A}\:\in\:{R}^{{N}×{N}} \:{be}\:{a}\:{symmetric}\:{positive} \\ $$$${definite}\:{matrix}\:{and}\:{b}\:\in\:{R}^{{N}} \:{a}\:{vector}. \\ $$$${If}\:{x}\:\in\:{R}^{{N}} ,\:{evaluate}\:{the}\:{integral} \\ $$$${Z}\left({A},{b}\right)\:=\:\int{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}^{{T}} {Ax}\:+\:{b}^{{T}} {x}} {dx}\:{as}\:{a}\:{function} \\ $$$${of}\:{A}\:{and}\:{b}. \\…

Question-203897

Question Number 203897 by NasaSara last updated on 01/Feb/24 Answered by AST last updated on 01/Feb/24 $${cos}^{\mathrm{2}} \left({x}\right)−{cos}\left({x}\right)=\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} {x}} \\ $$$$\Rightarrow{cos}^{\mathrm{4}} \left({x}\right)+\mathrm{2}{cos}^{\mathrm{2}} \left({x}\right)−\mathrm{2}{cos}^{\mathrm{3}} \left({x}\right)−\mathrm{1}=\mathrm{0} \\…

Let-f-W-be-a-function-of-vector-W-R-N-i-e-f-W-1-1-e-W-T-x-Determine-the-first-derivative-and-matrix-of-second-derivatives-of-f-with-respect-to-W-

Question Number 203898 by necx122 last updated on 02/Feb/24 $${Let}\:{f}\left({W}\right)\:{be}\:{a}\:{function}\:{of}\:{vector}\:{W}\:\in\: {R}^{{N}} , \\ $$$${i}.{e}.\:{f}\left({W}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{e}^{−{W}^{{T}} {x}} } \\ $$$${Determine}\:{the}\:{first}\:{derivative}\:{and} \\ $$$${matrix}\:{of}\:{second}\:{derivatives}\:{of}\:{f}\:{with} \\ $$$${respect}\:{to}\:{W} \\ $$$$ \\…