Menu Close

Author: Tinku Tara

determine-whether-the-series-is-convergent-or-divergent-n-1-n-4n-2-1-

Question Number 203774 by Calculusboy last updated on 27/Jan/24 $$\boldsymbol{{determine}}\:\boldsymbol{{whether}}\:\boldsymbol{{the}}\:\boldsymbol{{series}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{convergent}}\:\boldsymbol{{or}}\:\boldsymbol{{divergent}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\boldsymbol{{n}}}{\:\sqrt{\mathrm{4}\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{1}}} \\ $$ Answered by witcher3 last updated on…

Question-203742

Question Number 203742 by Calculusboy last updated on 27/Jan/24 Answered by mr W last updated on 27/Jan/24 $${x}^{\mathrm{2024}} +{x}^{\mathrm{2024}} −\mathrm{2024}×\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2023}} +…=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2024}} −\mathrm{506}{x}^{\mathrm{2023}} +…=\mathrm{0}…

Question-203771

Question Number 203771 by Calculusboy last updated on 27/Jan/24 Answered by DwaipayanShikari last updated on 27/Jan/24 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\begin{pmatrix}{{n}+\mathrm{3}}\\{\mathrm{3}}\end{pmatrix}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}!}{\left({n}+\mathrm{3}\right)!\mathrm{3}!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}!}\underset{{n}=\mathrm{0}}…

Question-203750

Question Number 203750 by patrice last updated on 27/Jan/24 Answered by witcher3 last updated on 27/Jan/24 $$\frac{\mathrm{4}\left(\mathrm{k}+\mathrm{2}\right)−\mathrm{k}}{\mathrm{k}\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\frac{\mathrm{4}}{\mathrm{k}.\mathrm{2}^{\mathrm{k}} }−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\frac{\mathrm{1}}{\mathrm{k}.\mathrm{2}^{\mathrm{k}−\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{2}\right)\mathrm{2}^{\mathrm{k}} }=\mathrm{V}_{\mathrm{k}} −\mathrm{V}_{\mathrm{k}+\mathrm{2}} \\ $$$$\mathrm{s}_{\mathrm{n}}…

Question-203747

Question Number 203747 by patrice last updated on 27/Jan/24 Answered by esmaeil last updated on 27/Jan/24 $${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}}{\mathrm{1}+{cosx}}{dx}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sinx}}{\mathrm{1}+{cosx}}{dx} \\ $$$${x}={u}\rightarrow{dx}={du} \\ $$$$\frac{{dx}}{\mathrm{1}+{cosx}}={dv}\rightarrow{v}={tan}\frac{{x}}{\mathrm{2}}…