Question Number 213796 by efronzo1 last updated on 17/Nov/24 Answered by A5T last updated on 17/Nov/24 $${x}_{\mathrm{0}} ={k}\Rightarrow{x}_{\mathrm{1}} =\frac{\mathrm{1}+{k}}{\mathrm{1}−{k}}\Rightarrow{x}_{\mathrm{2}} =\frac{−\mathrm{1}}{{k}}\Rightarrow{x}_{\mathrm{3}} =\frac{{k}−\mathrm{1}}{\mathrm{1}+{k}}\Rightarrow{x}_{\mathrm{4}} =\frac{\mathrm{2}{k}}{\mathrm{2}}={k} \\ $$$$\Rightarrow{x}_{\mathrm{4}{n}} ={k}=\mathrm{2022}…
Question Number 213790 by issac last updated on 16/Nov/24 $$\mathrm{So}\:\mathrm{Weird}…… \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$$${J}_{−\nu} \left({t}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu} \left({t}\right)\:\: \\…
Question Number 213791 by hardmath last updated on 16/Nov/24 $$\mathrm{If}\:\:\:\mathrm{x}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:=\:\:\mathrm{10} \\ $$$$\mathrm{Find}\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:+\:\:\mathrm{3}\:\:=\:\:? \\ $$ Commented by muallimRiyoziyot last updated on 19/Nov/24 $${x}−\mathrm{8}=\sqrt[{\mathrm{3}}]{{x}}+\mathrm{2}+\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{{x}}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{{x}}−\mathrm{2}\right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }+\mathrm{2}\sqrt[{\mathrm{3}}]{{x}}+\mathrm{4}\right)=\frac{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}}…
Question Number 213764 by Hanuda354 last updated on 16/Nov/24 Answered by mr W last updated on 16/Nov/24 $$\left(\mathrm{1}\right)\:\mathrm{4}−\mathrm{1}−\mathrm{3}−\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{4}−\mathrm{3}−\mathrm{1}−\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{1}−\mathrm{4}−\mathrm{3}−\mathrm{2} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{1}−\mathrm{4}−\mathrm{2}−\mathrm{3} \\…
Question Number 213776 by mnjuly1970 last updated on 16/Nov/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{F}{ind}\:\:{the}\:\:{value}\:{of}\:\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:{expression}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\Omega=\:\:\:\frac{\:\mathrm{I}{m}\left(\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{2}\right)\right)}{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{sin}\left({x}\:\right)\right)\:{dx}}\:\:=\:? \\ $$ Answered by…
Question Number 213756 by Spillover last updated on 15/Nov/24 Answered by mr W last updated on 16/Nov/24 $$\theta=\mathrm{tan}^{−\mathrm{1}} \mu_{{k}} \approx\mathrm{4}.\mathrm{57}° \\ $$ Commented by Spillover…
Question Number 213757 by Spillover last updated on 15/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213741 by bourasi last updated on 15/Nov/24 $$\sqrt{\mathrm{1}−\mathrm{sin}} \\ $$ Commented by Frix last updated on 15/Nov/24 $$\mathrm{Is}\:\mathrm{sin}\:\mathrm{a}\:\mathrm{variable}\:\mathrm{name}\:\mathrm{or}\:\mathrm{s}×\mathrm{i}×\mathrm{n}? \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{case},\:\mathrm{is}\:\mathrm{i}=\sqrt{−\mathrm{1}}? \\ $$…
Question Number 213759 by Spillover last updated on 15/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213738 by Spillover last updated on 15/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com