Menu Close

Author: Tinku Tara

Solve-4x-3-8xy-2-4x-0-1-8x-2-y-4y-0-2-simultaneosly-i-e-find-the-stationary-point-Thank-you-

Question Number 203525 by Mastermind last updated on 21/Jan/24 $$\mathrm{Solve}:\: \\ $$$$\mathrm{4x}^{\mathrm{3}} +\mathrm{8xy}^{\mathrm{2}} −\mathrm{4x}=\mathrm{0}\:—–\left(\mathrm{1}\right) \\ $$$$\mathrm{8x}^{\mathrm{2}} \mathrm{y}−\mathrm{4y}\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}\:—–\left(\mathrm{2}\right) \\ $$$$\mathrm{simultaneosly}\:\mathrm{i}.\mathrm{e}\:\mathrm{find}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{point} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}…

Determine-the-maximum-and-minimum-of-the-function-f-x-y-x-4-4x-2-y-2-2x-2-2y-2-1-Thank-you-

Question Number 203526 by Mastermind last updated on 21/Jan/24 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{function}: \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{2y}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$…

Find-the-maximum-value-of-the-function-f-x-y-x-2-y-2-z-2-subject-to-the-condition-that-x-2-y-2-z-2-c-2-where-c-is-the-constant-Thank-you-in-advance-

Question Number 203527 by Mastermind last updated on 21/Jan/24 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} ,\:\mathrm{where}\:\mathrm{c}\:\mathrm{is}\:\mathrm{the}\:\mathrm{constant}. \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance}…

Question-203480

Question Number 203480 by mr W last updated on 20/Jan/24 Commented by mr W last updated on 20/Jan/24 $${is}\:{it}\:{possible}\:{that}\:{the}\:{red}\:{lines}\:{divide} \\ $$$${the}\:{square}\:{into}\:\mathrm{4}\:{parts}\:{with}\:{given}\: \\ $$$${areas}?\:{if}\:{yes},\:{find}\:{the}\:{length}\:{of}\:{the} \\ $$$${red}\:{lines}.…

Evaluate-the-given-limit-lim-n-8-1-n-1-16-1-n-1-

Question Number 203508 by Fridunatjan08 last updated on 20/Jan/24 $${Evaluate}\:{the}\:{given}\:{limit}: \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\frac{\sqrt[{{n}}]{\mathrm{8}}−\mathrm{1}}{\:\sqrt[{{n}}]{\mathrm{16}}−\mathrm{1}} \\ $$ Answered by esmaeil last updated on 20/Jan/24 $$={Y} \\ $$$$\frac{\mathrm{1}}{{n}}={p}\rightarrow\left({n}\rightarrow\infty\rightarrow{p}\rightarrow\mathrm{0}\right)…

z-4-4z-3-6z-2-4z-1-z-4-4z-3-6z-2-4z-1-z-1-z-1-Find-z-R-

Question Number 203474 by ajfour last updated on 20/Jan/24 $$\frac{{z}^{\mathrm{4}} +\mathrm{4}{z}^{\mathrm{3}} −\mathrm{6}{z}^{\mathrm{2}} −\mathrm{4}{z}+\mathrm{1}}{{z}^{\mathrm{4}} −\mathrm{4}{z}^{\mathrm{3}} −\mathrm{6}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{1}}=\frac{{z}+\mathrm{1}}{{z}−\mathrm{1}} \\ $$$${Find}\:{z}\in\mathbb{R}. \\ $$ Answered by Rasheed.Sindhi last updated…