Question Number 203529 by sonukgindia last updated on 21/Jan/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203557 by ajfour last updated on 21/Jan/24 Commented by ajfour last updated on 21/Jan/24 $${Find}\:{maimum}\:{blue}\:{shaded}\:{area}. \\ $$ Answered by mr W last updated…
Question Number 203525 by Mastermind last updated on 21/Jan/24 $$\mathrm{Solve}:\: \\ $$$$\mathrm{4x}^{\mathrm{3}} +\mathrm{8xy}^{\mathrm{2}} −\mathrm{4x}=\mathrm{0}\:—–\left(\mathrm{1}\right) \\ $$$$\mathrm{8x}^{\mathrm{2}} \mathrm{y}−\mathrm{4y}\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}\:—–\left(\mathrm{2}\right) \\ $$$$\mathrm{simultaneosly}\:\mathrm{i}.\mathrm{e}\:\mathrm{find}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{point} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}…
Question Number 203526 by Mastermind last updated on 21/Jan/24 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{function}: \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{2y}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$…
Question Number 203527 by Mastermind last updated on 21/Jan/24 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \mathrm{z}^{\mathrm{2}} \:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} ,\:\mathrm{where}\:\mathrm{c}\:\mathrm{is}\:\mathrm{the}\:\mathrm{constant}. \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{in}\:\mathrm{advance}…
Question Number 203554 by Mastermind last updated on 21/Jan/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203480 by mr W last updated on 20/Jan/24 Commented by mr W last updated on 20/Jan/24 $${is}\:{it}\:{possible}\:{that}\:{the}\:{red}\:{lines}\:{divide} \\ $$$${the}\:{square}\:{into}\:\mathrm{4}\:{parts}\:{with}\:{given}\: \\ $$$${areas}?\:{if}\:{yes},\:{find}\:{the}\:{length}\:{of}\:{the} \\ $$$${red}\:{lines}.…
Question Number 203508 by Fridunatjan08 last updated on 20/Jan/24 $${Evaluate}\:{the}\:{given}\:{limit}: \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\frac{\sqrt[{{n}}]{\mathrm{8}}−\mathrm{1}}{\:\sqrt[{{n}}]{\mathrm{16}}−\mathrm{1}} \\ $$ Answered by esmaeil last updated on 20/Jan/24 $$={Y} \\ $$$$\frac{\mathrm{1}}{{n}}={p}\rightarrow\left({n}\rightarrow\infty\rightarrow{p}\rightarrow\mathrm{0}\right)…
Question Number 203509 by Fridunatjan08 last updated on 20/Jan/24 $${Find}\:{the}\:{value}\:{of}: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{2}^{{n}} +\mathrm{1}}{\mathrm{2}^{{n}} −\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203474 by ajfour last updated on 20/Jan/24 $$\frac{{z}^{\mathrm{4}} +\mathrm{4}{z}^{\mathrm{3}} −\mathrm{6}{z}^{\mathrm{2}} −\mathrm{4}{z}+\mathrm{1}}{{z}^{\mathrm{4}} −\mathrm{4}{z}^{\mathrm{3}} −\mathrm{6}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{1}}=\frac{{z}+\mathrm{1}}{{z}−\mathrm{1}} \\ $$$${Find}\:{z}\in\mathbb{R}. \\ $$ Answered by Rasheed.Sindhi last updated…