Menu Close

Author: Tinku Tara

sin6-sin12-sin24-sin28-

Question Number 203242 by sulaymonnorboyev140 last updated on 13/Jan/24 $${sin}\mathrm{6}°\centerdot{sin}\mathrm{12}°\centerdot{sin}\mathrm{24}°\centerdot{sin}\mathrm{28}° \\ $$ Answered by MathematicalUser2357 last updated on 15/Jan/24 $$\mathrm{4}.\mathrm{1498}×\mathrm{10}^{−\mathrm{3}} \\ $$ Terms of Service…

Show-this-has-exactly-7-solutions-for-x-C-x-ln-x-1-

Question Number 203275 by Frix last updated on 13/Jan/24 $$\mathrm{Show}\:\mathrm{this}\:\mathrm{has}\:\mathrm{exactly}\:\mathrm{7}\:\mathrm{solutions}\:\mathrm{for}\:{x}\in\mathbb{C}: \\ $$$${x}^{\mathrm{ln}\:{x}} =\mathrm{1} \\ $$ Commented by aleks041103 last updated on 14/Jan/24 $${When}\:{you}\:{use}\:{ln}\left({x}\right)\:{do}\:{you}\:{imply}\:{the}\:{principle} \\ $$$${branch}\:{of}\:{this}\:{function}?…

Question-203269

Question Number 203269 by ahmetgg last updated on 13/Jan/24 Answered by esmaeil last updated on 13/Jan/24 $${tan}\mathrm{10}=\frac{{AH}}{{BH}} \\ $$$${tan}\mathrm{20}=\frac{{HC}}{{BH}}\rightarrow\frac{{HC}}{{AH}}\approx\mathrm{2}.\mathrm{0642} \\ $$$${tan}\mathrm{50}=\frac{{OH}}{{AH}} \\ $$$${tanx}=\frac{{OH}}{{CH}}\rightarrow\frac{{tan}\mathrm{50}}{{tanx}}\approx\mathrm{2}.\mathrm{0642}\rightarrow \\ $$$${x}={tan}^{−\mathrm{1}}…

find-the-last-4-digits-of-2024-2023-

Question Number 203270 by MrGHK last updated on 13/Jan/24 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\mathrm{4}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2024}^{\mathrm{2023}} \\ $$ Answered by Frix last updated on 14/Jan/24 $$\mathrm{Last}\:\mathrm{4}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{2024}^{{n}} \\ $$$${n}=\mathrm{1}\:\mathrm{2024} \\ $$$$\mathrm{Then}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{length}\:\mathrm{50} \\…

If-x-1-5-2-find-x-12-

Question Number 203264 by hardmath last updated on 13/Jan/24 $$\mathrm{If}\:\:\:\:\:\mathrm{x}\:=\:\frac{\mathrm{1}\:+\:\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\:\:\:\mathrm{find}:\:\mathrm{x}^{\mathrm{12}} \:=\:? \\ $$ Answered by MM42 last updated on 13/Jan/24 $$\begin{cases}{{x}^{\mathrm{2}} =\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}}}\\{{x}^{\mathrm{4}} =\frac{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}}\end{cases}\:\:\Rightarrow{x}^{\mathrm{6}} =\mathrm{9}+\mathrm{4}\sqrt{\mathrm{5}} \\…

Let-s-define-linear-Operator-L-as-L-0-e-st-L-W-t-W-t-is-inverse-function-of-y-t-te-t-t-1-e-

Question Number 203199 by MathedUp last updated on 12/Jan/24 $$\mathrm{Let}'{s}\:\mathrm{define}\:\mathrm{linear}\:\mathrm{Operator}\:\boldsymbol{\mathcal{L}}\:\mathrm{as}\:\boldsymbol{\mathcal{L}}=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}} \centerdot \\ $$$$\boldsymbol{\mathcal{L}}\left\{{W}\left({t}\right)\right\}=??? \\ $$$${W}\left({t}\right)\:\mathrm{is}\:\mathrm{inverse}\:\mathrm{function}\:\mathrm{of}\:{y}\left({t}\right)={te}^{{t}} \:,\:{t}\in\left[−\frac{\mathrm{1}}{{e}},\infty\right) \\ $$ Commented by shunmisaki007 last updated…