Menu Close

Author: Tinku Tara

0-2pi-0-2pi-sin-cos-sin-cos-2sin-2cos-2sin-cos-3-3-2-d-d-

Question Number 215033 by MrGaster last updated on 27/Dec/24 $$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{sin}\theta−\mathrm{cos}\varphi−\mathrm{sin}\theta\mathrm{cos}\varphi}{\left(\mathrm{2sin}\theta−\mathrm{2cos}\varphi−\mathrm{2sin}\theta\mathrm{cos}\varphi+\mathrm{3}\right)^{\mathrm{3}/\mathrm{2}} }{d}\theta{d}\varphi \\ $$$$ \\ $$ Terms of Service Privacy…

f-0-1-R-is-given-f-is-continuous-by-the-way-f-0-f-1-prove-that-determinant-0-1-f-x-2-dx-3-f-1-2-

Question Number 215020 by mnjuly1970 last updated on 26/Dec/24 $$ \\ $$$$\:\:\:\:{f}:\:\:\left[\mathrm{0}\:,\:\mathrm{1}\right]\:\rightarrow\mathbb{R}\:{is}\:{given}. \\ $$$$\:\:\:\:{f}\:''\:\:\:\:{is}\:{continuous}\:. \\ $$$$\:\:\:\:{by}\:{the}\:{way}\:\:{f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right). \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\: \\ $$$$\begin{array}{|c|}{\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\:{f}\:''\:\left({x}\right)\right)^{\:\mathrm{2}} {dx}\:\geqslant\:\mathrm{3}\left({f}\:'\left(\mathrm{1}\right)\right)^{\mathrm{2}}…

a-b-c-d-R-such-that-a-b-c-d-2-a-c-b-d-3-a-d-b-c-4-find-a-2-b-2-c-2-d-2-minimum-

Question Number 215005 by Abdullahrussell last updated on 25/Dec/24 $$\:{a},{b},{c},{d}\in{R}\:{such}\:{that}, \\ $$$$\:\left({a}+{b}\right)\left({c}+{d}\right)=\mathrm{2} \\ $$$$\:\left({a}+{c}\right)\left({b}+{d}\right)=\mathrm{3} \\ $$$$\:\left({a}+{d}\right)\left({b}+{c}\right)=\mathrm{4}\: \\ $$$$\:{find}:\:\:\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)_{{minimum}.} \\ $$ Answered…

Solve-3x-5-5-2x-3-5-x-2-5-3x-5-3-2x-3-3-x-2-3-65-

Question Number 214977 by Abdullahrussell last updated on 25/Dec/24 $$\:{Solve}: \\ $$$$\:\frac{\left(\mathrm{3}{x}−\mathrm{5}\right)^{\mathrm{5}} −\left(\mathrm{2}{x}−\mathrm{3}\right)^{\mathrm{5}} −\left({x}−\mathrm{2}\right)^{\mathrm{5}} }{\left(\mathrm{3}{x}−\mathrm{5}\right)^{\mathrm{3}} −\left(\mathrm{2}{x}−\mathrm{3}\right)^{\mathrm{3}} −\left({x}−\mathrm{2}\right)^{\mathrm{3}} }=\mathrm{65} \\ $$ Answered by MrGaster last updated…