Menu Close

Author: Tinku Tara

Question-214753

Question Number 214753 by BaliramKumar last updated on 18/Dec/24 Commented by BaliramKumar last updated on 19/Dec/24 $${solve}\:{by}\:{computer}\:{programming}\: \\ $$$${for}\:{any}\:{primitive}\:{triplets} \\ $$$${ex}.\:\:\:\:\left({l},\:{b},\:{h}\right)\:\equiv\:\left(\mathrm{2},\:\mathrm{2},\:\mathrm{1}\right)\:\:\&\:\left({a},\:{b},\:{c}\right)\:\equiv\:\left(\mathrm{3},\:\mathrm{4},\:\mathrm{5}\right) \\ $$ Terms of…

x-

Question Number 214712 by efronzo1 last updated on 17/Dec/24 $$\:\:\:\cancel{\underline{\underbrace{\boldsymbol{{x}}}}} \\ $$ Answered by mr W last updated on 17/Dec/24 $${r}^{\mathrm{2}} −\mathrm{3}{r}+\mathrm{2}=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)=\mathrm{0} \\…

Find-matrix-B-if-given-AB-BA-0-0-0-0-where-A-5-3-5-3-and-B-0-0-0-0-

Question Number 214713 by efronzo1 last updated on 17/Dec/24 $$\:\:\mathrm{Find}\:\mathrm{matrix}\:\mathrm{B}\:\mathrm{if}\:\mathrm{given}\:\mathrm{AB}=\mathrm{BA}=\begin{pmatrix}{\mathrm{0}\:\:\mathrm{0}}\\{\mathrm{0}\:\:\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\mathrm{where}\:\mathrm{A}=\:\begin{pmatrix}{\mathrm{5}\:\:\:\mathrm{3}}\\{\mathrm{5}\:\:\:\mathrm{3}}\end{pmatrix}\:\mathrm{and}\:\mathrm{B}\:\neq\:\begin{pmatrix}{\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{0}}\end{pmatrix} \\ $$$$ \\ $$ Answered by golsendro last updated on 18/Dec/24 $$\:\mathrm{det}\left(\mathrm{A}\right)=\:\mathrm{15}−\mathrm{15}=\mathrm{0} \\…

Question-214683

Question Number 214683 by MATHEMATICSAM last updated on 16/Dec/24 Commented by MATHEMATICSAM last updated on 16/Dec/24 $$\mathrm{Circles}\:\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}\:\mathrm{have}\:\mathrm{equal}\:\mathrm{radii}\:\mathrm{and} \\ $$$$\mathrm{are}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{line}\:\mathrm{XY}.\:\mathrm{Circle} \\ $$$$\mathrm{C3}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{C1}\:\mathrm{and}\:\mathrm{C2}.\:\mathrm{Find} \\ $$$$\mathrm{distance}\:{h},\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{C3}\:\mathrm{to}\:\mathrm{line} \\ $$$$\mathrm{XY}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{x}\:\mathrm{and}\:\mathrm{radii}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circles}.…

solve-partial-differantial-equation-x-f-x-y-x-y-f-x-y-y-f-x-y-ln-x-2-y-2-2-f-x-y-x-2-2-f-x-y-y-2-0-

Question Number 214678 by issac last updated on 16/Dec/24 $$\mathrm{solve} \\ $$$$\mathrm{partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$${x}\frac{\partial{f}\left({x},{y}\right)}{\partial{x}}+{y}\frac{\partial{f}\left({x},{y}\right)}{\partial{y}}={f}\left({x},{y}\right)\mathrm{ln}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\frac{\partial^{\mathrm{2}} {f}\left({x},{y}\right)}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {f}\left({x},{y}\right)}{\partial{y}^{\mathrm{2}} }=\mathrm{0} \\ $$ Answered…

let-s-define-linear-differantial-operator-D-as-D-z-d-dz-z-d-dz-z-1-z-2-when-Df-z-z-d-dz-z-d-dz-z-1-z-2-f-z-0-f-z-

Question Number 214667 by issac last updated on 16/Dec/24 $$\mathrm{let}'\mathrm{s}\:\mathrm{define}\:\mathrm{linear}\:\mathrm{differantial}\:\mathrm{operator}\:\mathcal{D} \\ $$$$\mathrm{as}\:\mathcal{D}={z}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\left({z}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\right)+{z}\left(\mathrm{1}−\left(\frac{\alpha}{{z}}\right)^{\mathrm{2}} \right) \\ $$$$\mathrm{when} \\ $$$$\mathcal{D}{f}\left({z}\right)=\left\{{z}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\left({z}\centerdot\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\right)+{z}\left(\mathrm{1}−\left(\frac{\alpha}{{z}}\right)^{\mathrm{2}} \right)\right\}{f}\left({z}\right)=\mathrm{0} \\ $$$${f}\left({z}\right)=? \\ $$ Terms of Service…