Menu Close

Author: Tinku Tara

x-1-x-1-1-x-1-1-x-

Question Number 202638 by depressiveshrek last updated on 31/Dec/23 $$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}−\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}=\mathrm{1}−\frac{\mathrm{1}}{{x}} \\ $$ Commented by AST last updated on 31/Dec/23 $${x}=\mathrm{1}.{Suppose}\:{x}\neq\mathrm{1},{let}\:{a}=\sqrt{{x}−\frac{\mathrm{1}}{{x}}};{b}=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}} \\ $$$${a}−{b}=\mathrm{1}−\frac{\mathrm{1}}{{x}};\left({a}+{b}\right)^{\mathrm{2}} =\mathrm{1}+{x} \\ $$$${a}^{\mathrm{2}}…

determine-le-reste-de-la-division-eucludienne-de-2023-2019-par-13-

Question Number 202698 by Bambamamoudou last updated on 31/Dec/23 $${determine}\:{le}\:{reste}\:{de}\:{la}\:{division}\:{eucludienne}\:{de}\:\mathrm{2023}^{\mathrm{2019}} {par}\:\mathrm{13} \\ $$ Answered by Rasheed.Sindhi last updated on 01/Jan/24 $$\because\:{gcd}\left(\mathrm{2023},\mathrm{13}\right)=\mathrm{1} \\ $$$$\therefore\:\:\:\:\mathrm{2023}^{\phi\left(\mathrm{13}\right)} \equiv\mathrm{1}\left({mod}\:\mathrm{13}\right) \\…

If-a-a-b-1-a-a-b-x-Find-1-b-a-b-b-a-b-

Question Number 202616 by hardmath last updated on 30/Dec/23 $$\mathrm{If}\:\:\:\:\:\frac{\mathrm{a}}{\mathrm{a}\:+\:\mathrm{b}}\:−\:\frac{\mathrm{1}\:−\:\mathrm{a}}{\mathrm{a}\:−\:\mathrm{b}}\:=\:\mathrm{x} \\ $$$$\mathrm{Find}\:\:\:\:\:\frac{\mathrm{1}\:−\:\mathrm{b}}{\mathrm{a}\:−\:\mathrm{b}}\:+\:\frac{\mathrm{b}}{\mathrm{a}\:+\:\mathrm{b}}\:=\:? \\ $$ Answered by MATHEMATICSAM last updated on 30/Dec/23 $$\frac{{a}}{{a}\:+\:{b}}\:−\:\frac{\mathrm{1}\:−\:{a}}{{a}\:−\:{b}}\:=\:{x} \\ $$$$\Rightarrow\:\frac{{a}}{{a}\:+\:{b}}\:−\:\mathrm{1}\:−\:\frac{\mathrm{1}\:−\:{a}}{{a}\:−\:\:{b}}\:−\:\mathrm{1}\:=\:{x}\:−\:\mathrm{2} \\…

3-4-5-x-4-6-x-1-dx-1-2-2x-1-find-the-value-of-x-Solution-4-5-x-3-4-6-x-2-2-x-k

Question Number 202636 by ibroclex_adex last updated on 30/Dec/23 $$\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\:^{\mathrm{3}} \sqrt{\mathrm{4}^{\mathrm{5}−\mathrm{x}} }}{\int_{\mathrm{4}} ^{\mathrm{6}} \left(\mathrm{x}−\mathrm{1}\right){dx}}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2x}−\mathrm{1}} }\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\mathrm{Solution}}…