Menu Close

Author: Tinku Tara

Question-202208

Question Number 202208 by hardmath last updated on 22/Dec/23 Commented by mr W last updated on 22/Dec/23 $${which}\:{country}\:{are}\:{you}\:{from}? \\ $$$${internationally}\:{the}\:{ABO}\:{blood} \\ $$$${group}\:{system}\:{is}\:{common},\:{see}\:{below}. \\ $$$${but}\:{you}\:{are}\:{talking}\:{about}\:{blood}\: \\…

find-x-in-the-interval-0-lt-x-lt-360-if-f-x-6sinx-is-12-

Question Number 202143 by otchereabdullai@gmail.com last updated on 21/Dec/23 $$\:{find}\:{x}\:{in}\:{the}\:{interval}\:\:\mathrm{0}°<{x}<\mathrm{360}°\:{if} \\ $$$$\:\:{f}\left({x}\right)=\:\mathrm{6}{sinx}\:{is}\:−\mathrm{12} \\ $$ Commented by otchereabdullai@gmail.com last updated on 22/Dec/23 $${answer}\:{in}\:{the}\:{book}\:{is}\:\mathrm{210}°\:{and}\:\mathrm{330}°\: \\ $$$${but}\:{i}\:{dont}\:{know}\:{how}\:\:{he}\:{come}\:{about}\: \\…

If-p-9999-then-4p-3-p-2p-1-6p-3-

Question Number 202129 by MATHEMATICSAM last updated on 21/Dec/23 $$\mathrm{If}\:{p}\:=\:\mathrm{9999}\:\mathrm{then}\:\frac{\mathrm{4}{p}^{\mathrm{3}} \:−\:{p}}{\left(\mathrm{2}{p}\:+\:\mathrm{1}\right)\left(\mathrm{6}{p}\:−\:\mathrm{3}\right)}\:=\:? \\ $$ Answered by AST last updated on 21/Dec/23 $$\frac{{p}\left(\mathrm{2}{p}−\mathrm{1}\right)\left(\mathrm{2}{p}+\mathrm{1}\right)}{\mathrm{3}\left(\mathrm{2}{p}+\mathrm{1}\right)\left(\mathrm{2}{p}−\mathrm{1}\right)}=\frac{{p}=\mathrm{9999}}{\mathrm{3}}=\mathrm{3333} \\ $$ Terms of…

sin-3x-1-sin-3-x-dx-

Question Number 202125 by Calculusboy last updated on 21/Dec/23 $$\int\:\frac{\boldsymbol{{sin}}\left(\mathrm{3}\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{x}}}\boldsymbol{{dx}} \\ $$ Answered by Frix last updated on 21/Dec/23 $$\mathrm{Let}\:{s}=\mathrm{sin}\:{x} \\ $$$$\frac{\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{3}} \:{x}}=\frac{{s}\left(\mathrm{4}{s}^{\mathrm{2}} −\mathrm{3}\right)}{\left({s}+\mathrm{1}\right)\left({s}^{\mathrm{2}}…

Question-202127

Question Number 202127 by Calculusboy last updated on 21/Dec/23 Answered by qaz last updated on 21/Dec/23 $$\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{{dx}}{\mathrm{1}+\mathrm{tan}^{\pi} \:{x}}=\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \frac{{dx}}{\mathrm{1}+\mathrm{cot}\:^{\pi} {x}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\pi}…

If-and-are-the-roots-of-ax-2-bx-c-0-If-1-and-1-are-the-roots-of-a-1-x-2-b-1-x-c-1-0-If-b-1-a-1-k-b-c-then-k-

Question Number 202120 by MATHEMATICSAM last updated on 21/Dec/23 $$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{If}\:\:\frac{\mathrm{1}\:−\:\alpha}{\alpha}\:\mathrm{and}\:\frac{\mathrm{1}\:−\:\beta}{\beta}\:\mathrm{are} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{a}_{\mathrm{1}} {x}^{\mathrm{2}} \:+\:{b}_{\mathrm{1}} {x}\:+\:{c}_{\mathrm{1}} \:=\:\mathrm{0}.\:\mathrm{If} \\ $$$$\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\:=\:{k}\:+\:\frac{{b}}{{c}}\:\mathrm{then}\:{k}\:=\:? \\ $$…

1-1-3-1-3-5-1-5-7-

Question Number 202123 by BaliramKumar last updated on 21/Dec/23 $$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{3}×\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{5}×\mathrm{7}}\:+\:……………\infty\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 21/Dec/23 $${t}_{{n}} =\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:{let}\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}=\frac{{a}}{\mathrm{2}{n}−\mathrm{1}}+\frac{{b}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\:\:\:{a}\left(\mathrm{2}{n}+\mathrm{1}\right)+{b}\left(\mathrm{2}{n}−\mathrm{1}\right)=\mathrm{1}…

3-x-1-2-x-find-x-

Question Number 202116 by Calculusboy last updated on 21/Dec/23 $$\sqrt{\mathrm{3}^{\boldsymbol{{x}}} }\:+\mathrm{1}=\mathrm{2}^{\boldsymbol{{x}}} \:\:\:\boldsymbol{{find}}\:\boldsymbol{{x}} \\ $$ Answered by Frix last updated on 21/Dec/23 $$\mathrm{Obviously}\:{x}=\mathrm{2} \\ $$$$\sqrt{\mathrm{3}^{\mathrm{2}} }+\mathrm{1}=\sqrt{\mathrm{9}}+\mathrm{1}=\mathrm{3}+\mathrm{1}=\mathrm{4}=\mathrm{2}^{\mathrm{2}}…