Menu Close

Author: Tinku Tara

There-are-two-possible-routes-from-Zindhi-to-Katifa-One-route-is-through-Zindhi-Chadler-expressway-which-is-100km-and-the-other-is-through-Adfeti-and-Ngonu-covering-a-distance-of-80km-A-motorist-goi

Question Number 202086 by necx122 last updated on 20/Dec/23 $${There}\:{are}\:{two}\:{possible}\:{routes}\:{from} \\ $$$${Zindhi}\:{to}\:{Katifa}.\:{One}\:{route}\:{is}\:{through} \\ $$$${Zindhi}/{Chadler}\:{expressway}\:{which}\:{is} \\ $$$$\mathrm{100}{km}\:{and}\:{the}\:{other}\:{is}\:{through}\:{Adfeti}\:{and} \\ $$$${Ngonu}\:{covering}\:{a}\:{distance}\:{of}\:\mathrm{80}{km}.\:{A} \\ $$$${motorist}\:{going}\:{through}\:{the}\:{expressway} \\ $$$${can}\:{travel}\:\mathrm{10}{km}/{h}\:{faster}\:{than}\:{the}\:{one} \\ $$$${going}\:{through}\:{Adfeti}\:{and}\:{Ngonu},\:{and} \\…

A-man-travelled-from-town-A-to-B-a-distance-of-360km-He-left-A-one-hour-later-than-he-had-planned-so-he-decided-to-drive-at-5km-h-faster-than-his-normal-speed-in-order-to-reach-B-on-schedule-If-he

Question Number 202079 by necx122 last updated on 19/Dec/23 $${A}\:{man}\:{travelled}\:{from}\:{town}\:{A}\:{to}\:{B},\:{a} \\ $$$${distance}\:{of}\:\mathrm{360}{km}.\:{He}\:{left}\:{A}\:{one}\:{hour} \\ $$$${later}\:{than}\:{he}\:{had}\:{planned}\:{so}\:{he}\:{decided} \\ $$$${to}\:{drive}\:{at}\:\mathrm{5}{km}/{h}\:{faster}\:{than}\:{his} \\ $$$${normal}\:{speed},\:{in}\:{order}\:{to}\:{reach}\:{B}\:{on} \\ $$$${schedule}.\:{If}\:{he}\:{arrived}\:{B}\:{at}\:{exactly}\:{the} \\ $$$${scheduled}\:{time},\:{find}\:{the}\:{normal}\:{speed}. \\ $$ Answered…

Simplify-2-sin-cos-sin-cos-

Question Number 202041 by hardmath last updated on 19/Dec/23 $$\mathrm{Simplify}:\:\:\:\frac{\sqrt{\mathrm{2}}\:−\:\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha}{\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha} \\ $$ Answered by cortano12 last updated on 19/Dec/23 $$\:=\:\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:\alpha+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{cos}\:\alpha\right)}{\:\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{cos}\:\alpha\right)} \\ $$$$\:=\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\alpha−\mathrm{45}°\right)}{\mathrm{sin}\:\:\left(\alpha−\mathrm{45}°\right)} \\ $$$$\:=\:\mathrm{csc}\:\left(\alpha−\mathrm{45}°\right)−\mathrm{cot}\:\left(\alpha−\mathrm{45}°\right) \\…

Question-202034

Question Number 202034 by cortano12 last updated on 19/Dec/23 Answered by MM42 last updated on 19/Dec/23 $${if}\:\frac{\mathrm{7}}{\mathrm{3}}<{a}<\frac{\mathrm{7}}{\mathrm{2}}\Rightarrow\lfloor\frac{\mathrm{7}}{{a}}\rfloor+\lfloor\frac{{a}}{\mathrm{7}}\rfloor=\mathrm{2} \\ $$$${if}\:\:\:\mathrm{14}<{a}<\mathrm{21}\Rightarrow\lfloor\frac{\mathrm{7}}{{a}}\rfloor+\lfloor\frac{{a}}{\mathrm{7}}\rfloor=\mathrm{2} \\ $$$$ \\ $$ Terms of…

Question-202056

Question Number 202056 by mr W last updated on 19/Dec/23 Commented by mr W last updated on 19/Dec/23 $${the}\:{lake}\:{with}\:{center}\:{at}\:{O}\:{has}\:{a}\:{radius} \\ $$$${r}\:\left({r}=\mathrm{1}\:{km}\right).\:{the}\:{shortest}\:{distances}\: \\ $$$${from}\:{the}\:{villages}\:{A}\:{and}\:{B}\:{to}\:{the}\: \\ $$$${lake}\:{are}\:{a}\:{and}\:{b}\:{respectively}\:\left({a}=\mathrm{4}\:{km},\right.…