Question Number 213435 by mnjuly1970 last updated on 14/Nov/24 $$ \\ $$$$\:\:\:\:\:\:\:{A}\:\in\:\mathrm{M}_{\mathrm{2}×\mathrm{2}} \:\:,{and}\:,{det}\:\left({A}\right)\neq\mathrm{0}\::\:\:\:{A}^{\mathrm{3}} \:=\:{A}^{\mathrm{2}} \:+\:{A} \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\:{det}\:\left(\:{A}\:−\mathrm{2}{I}\:\right)=? \\ $$$$\:\:\:\:\:\: \\ $$ Terms of Service Privacy…
Question Number 213428 by Mingma last updated on 05/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213430 by hardmath last updated on 05/Nov/24 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{x}\:+\:\left[\mathrm{y}\right]\:+\:\left\{\mathrm{z}\right\}\:=\:\mathrm{9},\mathrm{4}}\\{\left[\mathrm{x}\right]\:+\:\left\{\mathrm{y}\right\}\:+\:\mathrm{z}\:=\:\mathrm{11},\mathrm{3}}\\{\left\{\mathrm{x}\right\}\:+\:\mathrm{y}\:+\:\left[\mathrm{z}\right]\:=\:\mathrm{10},\mathrm{5}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$ Answered by A5T last updated on 05/Nov/24 $$\left({i}\right)−\left({ii}\right):\:\left\{{x}\right\}+\left[{y}\right]−\left\{{y}\right\}−\left[{z}\right]=−\mathrm{1}.\mathrm{9}…\left({iv}\right) \\ $$$$\left({iv}\right)−\left({iii}\right)\Rightarrow\left[{y}\right]−\left\{{y}\right\}−{y}−\mathrm{2}\left[{z}\right]=−\mathrm{12}.\mathrm{4} \\…
Question Number 213427 by Mingma last updated on 05/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213404 by issac last updated on 04/Nov/24 $$\mathrm{pls}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{above}\:\mathrm{question} \\ $$$$\downarrow\downarrow\:\left(\mathrm{prove}\:\mathrm{real}\:\mathrm{analysis}\:\mathrm{pls}\right) \\ $$$$\mathrm{and}\:\mathrm{sorry}\:\mathrm{Mr}\:\mathrm{gaster} \\ $$$$\mathrm{i}\:\mathrm{cant}\:\mathrm{believe}\:\mathrm{you}\:\mathrm{answer}…. \\ $$ Commented by MrGaster last updated on 04/Nov/24…
Question Number 213391 by York12 last updated on 04/Nov/24 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{where}\:{a},{b},{c}\geqslant\mathrm{0} \\ $$$${a}−\mathrm{2}{bc}={b}−\mathrm{2}{ac}={c}−\mathrm{2}{ab} \\ $$$${a}+{b}+{c}=\mathrm{2}\: \\ $$ Answered by Frix last updated on 04/Nov/24 $$\mathrm{Due}\:\mathrm{to}\:\mathrm{symmetry}\:{a}={b}={c}=\frac{\mathrm{2}}{\mathrm{3}} \\…
Question Number 213417 by hardmath last updated on 04/Nov/24 $$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:,\:\mathrm{d}\:\in\:\mathbb{N} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:+\:\mathrm{d}\:=\:\mathrm{63} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{maksimum}\left(\mathrm{ab}\:+\:\mathrm{bc}\:+\:\mathrm{cd}\right)\:=\:? \\ $$ Answered by Frix last updated on 05/Nov/24 $${d}=\mathrm{63}−{a}−{b}−{c} \\…
Question Number 213413 by hardmath last updated on 04/Nov/24 $$\mathrm{Find}: \\ $$$$\mathrm{A}=\:\left[\sqrt{\mathrm{1}}\right]\:+\:\left[\sqrt{\mathrm{2}}\right]\:+\:\left[\sqrt{\mathrm{3}}\:\right]+…+\:\left[\sqrt{\mathrm{323}}\right]\:=\:? \\ $$ Answered by mehdee7396 last updated on 04/Nov/24 $$=\left(\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+\right)+\left(\left[\mathrm{4}\right]+\left[\mathrm{5}\right]+…+\left[\left[\sqrt{\mathrm{8}}\right]\right)\right. \\ $$$$+\left(\left[\sqrt{\mathrm{9}}\right]+\left[\sqrt{\mathrm{10}}\right]+…+\left[\sqrt{\mathrm{24}}\right]\right)+… \\…
Question Number 213397 by ajfour last updated on 04/Nov/24 Answered by mr W last updated on 04/Nov/24 Commented by mr W last updated on 05/Nov/24…
Question Number 213398 by issac last updated on 04/Nov/24 $$\mathrm{One}\:\mathrm{simple}\:\mathrm{Equation} \\ $$$$\mathrm{pls}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{property} \\ $$$$\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\:{a}_{{j}} \centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}{b}_{{k}} =\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}\:{a}_{{j}} {b}_{{k}}…