Menu Close

Author: Tinku Tara

Question-201762

Question Number 201762 by Calculusboy last updated on 11/Dec/23 Answered by mr W last updated on 12/Dec/23 $$\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} \mathrm{cos}\:\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx} \\ $$$$=\int_{−\mathrm{2}} ^{\mathrm{2}}…

Find-1-cos3x-cosx-dx-2-3-x-sinx-dx-3-0-1-x-e-x-dx-4-1-e-ln-2-x-dx-

Question Number 201763 by hardmath last updated on 11/Dec/23 $$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\int\:\mathrm{cos3x}\:\mathrm{cosx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{2}.\:\int\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:\mathrm{sinx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} \:\mathrm{x}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$$$\mathrm{4}.\:\int_{\mathrm{1}} ^{\:\boldsymbol{\mathrm{e}}} \:\mathrm{ln}^{\mathrm{2}} \:\mathrm{x}\:\mathrm{dx}\:=\:?…

An-equilateral-triangle-inscribed-in-a-parabola-y-2-4x-One-of-its-vertices-is-at-the-vertex-of-the-parabola-Find-the-length-of-each-side-of-the-triangle-in-units-

Question Number 201660 by LimPorly last updated on 10/Dec/23 $${An}\:{equilateral}\:{triangle}\:{inscribed}\:{in}\:{a}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}.\:{One}\:{of}\:{its}\:{vertices}\:{is}\:{at}\:{the}\:{vertex}\:{of}\:\:{the}\:{parabola}. \\ $$$${Find}\:{the}\:{length}\:{of}\:{each}\:{side}\:{of}\:{the}\:{triangle}\:{in}\:{units}. \\ $$ Answered by som(math1967) last updated on 10/Dec/23 $$\:{slope}\:{of}\:{AB}\:={tan}\mathrm{30}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}…

if-f-x-sin-1-x-x-for-x-0-0-for-x-0-where-x-represents-an-integer-x-greatest-x-Find-lim-x-0-f-x-

Question Number 201657 by LimPorly last updated on 10/Dec/23 $${if}\:\:{f}\left({x}\right)=\begin{cases}{\frac{\mathrm{sin}\:\left(\mathrm{1}+\left[{x}\right]\right)}{\left[{x}\right]}\:\:{for}\:\left[{x}\right]\neq\mathrm{0}}\\{\mathrm{0}\:\:{for}\:\left[{x}\right]=\mathrm{0}}\end{cases} \\ $$$${where}\:\left[{x}\right]\:{represents}\:{an}\:{integer}\:\boldsymbol{{x}}\:{greatest}\:\leqslant\:\boldsymbol{{x}} \\ $$$${Find}\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}{f}\left({x}\right). \\ $$ Answered by aleks041103 last updated on 10/Dec/23…

Find-the-shortest-distance-between-point-A-3-2-and-curve-y-x-x-gt-0-

Question Number 201659 by LimPorly last updated on 10/Dec/23 $${Find}\:{the}\:{shortest}\:{distance}\:{between}\: \\ $$$${point}\:{A}\left(\mathrm{3},\mathrm{2}\right)\:{and}\:{curve}\:{y}=\sqrt{{x}}\:\left({x}>\mathrm{0}\right). \\ $$ Answered by mr W last updated on 10/Dec/23 $${say}\:{the}\:{distance}\:{is}\:{s}. \\ $$$${say}\:{the}\:{point}\:{on}\:{the}\:{curve}\:{is}\:\left({p}^{\mathrm{2}}…

Question-201654

Question Number 201654 by mokys last updated on 10/Dec/23 Answered by aleks041103 last updated on 10/Dec/23 $${First}\:{part}: \\ $$$${M}=\begin{pmatrix}{\mathrm{4}}&{\mathrm{3}}\\{\mathrm{1}}&{−\mathrm{2}}\end{pmatrix}\: \\ $$$${eigenvals}: \\ $$$${det}\left({M}−{xI}\right)=\begin{vmatrix}{\mathrm{4}−{x}}&{\mathrm{3}}\\{\mathrm{1}}&{−\mathrm{2}−{x}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{4}\right)\left({x}+\mathrm{2}\right)−\mathrm{3}=\mathrm{0}…

Question-201646

Question Number 201646 by Calculusboy last updated on 10/Dec/23 Answered by aleks041103 last updated on 10/Dec/23 $$\sqrt[{{ln}\left({x}\right)}]{{x}}={x}^{\frac{\mathrm{1}}{{ln}\left({x}\right)}} =\left({e}^{{ln}\left({x}\right)} \right)^{\frac{\mathrm{1}}{{ln}\left({x}\right)}} ={e}={const} \\ $$$$\Rightarrow\int\sqrt[{{ln}\left({x}\right)}]{{x}}\:{dx}\:=\:{ex}\:+\:{C} \\ $$ Terms…