Menu Close

Author: Tinku Tara

Question-201689

Question Number 201689 by cherokeesay last updated on 10/Dec/23 Answered by witcher3 last updated on 10/Dec/23 $$\mathrm{x}^{\mathrm{3}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{12x}−\mathrm{32}=\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{3}} −\mathrm{24} \\ $$$$\mathrm{x}−\mathrm{2}=\mathrm{y} \\ $$$$\Leftrightarrow\sqrt[{\mathrm{3}}]{\mathrm{y}+\mathrm{24}}=\mathrm{y}^{\mathrm{3}} −\mathrm{24}…

Question-201680

Question Number 201680 by cortano12 last updated on 10/Dec/23 $$\:\:\:\Subset \\ $$ Answered by Calculusboy last updated on 11/Dec/23 $$\boldsymbol{{Solution}}:\:\boldsymbol{{substitute}}\:\boldsymbol{{ditectly}},\:\boldsymbol{{we}}\:\boldsymbol{{get}}\:\frac{\mathrm{0}}{\mathrm{0}}\left(\boldsymbol{{indeterminant}}\right) \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{p}}=\mathrm{2}\boldsymbol{{sinx}}−\boldsymbol{{sim}}\mathrm{2}\boldsymbol{{x}}\:\:\:\:\:\frac{\boldsymbol{{dp}}}{\boldsymbol{{dx}}}=\mathrm{2}\boldsymbol{{cosx}}−\mathrm{2}\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{x}} \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{q}}=\boldsymbol{{sinx}}−\boldsymbol{{xcosx}}\:\:\:\frac{\boldsymbol{{dq}}}{\boldsymbol{{dx}}}=\boldsymbol{{cosx}}−\left(\boldsymbol{{cosx}}−\boldsymbol{{xsinx}}\right) \\…

f-x-1-f-x-3f-x-f-x-1-D-f-N-2023-f-1402-1-have-equation-f-x-1-solution-

Question Number 201681 by jabarsing last updated on 10/Dec/23 $${f}\left({x}+\mathrm{1}\right)−{f}\left({x}\right)=\mathrm{3}{f}\left({x}\right)×{f}\left({x}+\mathrm{1}\right) \\ $$$${D}_{{f}} ={N} \\ $$$$\mathrm{2023}×{f}\left(\mathrm{1402}\right)=\mathrm{1} \\ $$$${have}\:{equation}\:{f}\left({x}\right)=\mathrm{1}\:{solution}? \\ $$ Answered by Frix last updated on…

Starting-from-substituting-z-x-iy-Identify-the-maximal-region-within-which-f-z-is-analytic-f-z-1-z-z-1-Note-Do-not-start-by-just-differentiating-f-z-Start-by-doing-a-substitution-of-x-

Question Number 201683 by aurpeyz last updated on 10/Dec/23 $${Starting}\:{from}\:{substituting}\:{z}={x}+{iy}.\:{Identify} \\ $$$${the}\:{maximal}\:{region}\:{within}\:{which}\:{f}\left({z}\right)\:{is}\:{analytic} \\ $$$${f}\left({z}\right)=\frac{\mathrm{1}}{{z}\left({z}+\mathrm{1}\right)}.\: \\ $$$$ \\ $$$${Note}.\:{Do}\:{not}\:{start}\:{by}\:{just}\:{differentiating}\:{f}\left({z}\right).\: \\ $$$${Start}\:{by}\:\:{doing}\:{a}\:{substitution}\:{of}\:{x}\:{and}\:{iy}\:{and}\: \\ $$$${then}\:{verify}\:{Cauchy}\:{Rieman}\:{theorem}. \\ $$$$ \\…

Question-201679

Question Number 201679 by cherokeesay last updated on 10/Dec/23 Answered by Rasheed.Sindhi last updated on 10/Dec/23 $$\sqrt[{\mathrm{6}}]{\mathrm{1}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:+\sqrt[{\mathrm{6}}]{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:−\mathrm{1}}\:=\mathrm{1} \\ $$$${a}+{b}=\mathrm{1}\Rightarrow{b}=\mathrm{1}−{a} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} =\mathrm{1}−\sqrt{{x}^{\mathrm{2}}…

Question-201631

Question Number 201631 by professorleiciano last updated on 09/Dec/23 Answered by mr W last updated on 10/Dec/23 $${totally}\:{number}\:{of}\:{words}:\:\mathrm{6}!=\mathrm{720} \\ $$$$ \\ $$$${number}\:{of}\:{words}\:{in}\:{which}\:\mathrm{3}\:{vowels} \\ $$$${are}\:{together}:\:\mathrm{4}!\mathrm{3}!=\mathrm{144} \\…