Menu Close

Author: Tinku Tara

Question-201627

Question Number 201627 by professorleiciano last updated on 09/Dec/23 Answered by mr W last updated on 10/Dec/23 $${for}\:\mathrm{200}\:{meals}\:\mathrm{6}\:{cooks}\:{each}\:{working}\: \\ $$$$\mathrm{6}\:{hours}\:{are}\:{needed},\:{i}.{e}.\:{totally} \\ $$$$\mathrm{36}\:{working}\:{hours}\:{are}\:{needed}\:{for}\: \\ $$$$\mathrm{200}\:{meals}. \\…

1-3-2x-3x-1-2-1-x-3-1-2x-2-3-x-2-2x-35-x-2-gt-0-4-1-x-1-x-2-2-

Question Number 201595 by mokys last updated on 09/Dec/23 $$\left.\mathrm{1}\right)\:\:\mid\frac{\mathrm{3}+\mathrm{2}{x}}{\mathrm{3}{x}}\mid\:\leq\mathrm{1} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\mathrm{1}\leq\:\mid\:\frac{{x}−\mathrm{3}}{\mathrm{1}−\mathrm{2}{x}}\mid\leq\:\mathrm{2} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{35}}{{x}+\mathrm{2}}\:>\:\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\:−\mathrm{1}\:\leq\:\frac{{x}+\mathrm{1}}{{x}−\mathrm{2}}\:\leq\mathrm{2} \\ $$…

x-y-z-R-xy-yz-zx-3-x-y-z-5-max-z-

Question Number 201613 by hardmath last updated on 09/Dec/23 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{xy}\:+\:\mathrm{yz}\:+\:\mathrm{zx}\:=\:\mathrm{3}}\\{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{5}}\end{cases}\:\:\:\:\:\rightarrow\:\:\:\:\mathrm{max}\left(\boldsymbol{\mathrm{z}}\right)\:=\:? \\ $$ Answered by aleks041103 last updated on 09/Dec/23 $${x}+{y}+{z}=\mathrm{5}\Rightarrow{z}=\mathrm{5}−{x}−{y} \\ $$$$\Rightarrow{xy}+\left({x}+{y}\right)\left(\mathrm{5}−\left({x}+{y}\right)\right)=\mathrm{3} \\…

Solve-y-t-sin-t-y-t-0-y-2-0-0-y-1-0-1-y-0-0-L-y-t-sin-t-y-t-0-s-2-F-s-sy-0-y-0-L-sin-t-y-t-0-Holy-uck-I-already-know-y-t-ty-t-0-solu

Question Number 201582 by MathedUp last updated on 09/Dec/23 $$\mathrm{Solve}…. \\ $$$${y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)=\mathrm{0}\:,\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right)=−\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathcal{L}}\left\{{y}''\left({t}\right)−\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$${s}^{\mathrm{2}} \boldsymbol{\mathrm{F}}\left({s}\right)−{sy}\left(\mathrm{0}\right)−{y}'\left(\mathrm{0}\right)−\boldsymbol{\mathcal{L}}\left\{\mathrm{sin}\left({t}\right){y}\left({t}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{Holy}…×\mathrm{uck}…

x-y-z-R-a-b-c-gt-0-prove-that-x-2-a-y-2-b-z-2-c-x-y-z-2-a-b-c-

Question Number 201615 by hardmath last updated on 09/Dec/23 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}}\:+\:\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{c}}\:\geqslant\:\frac{\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} }{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$ Answered by AST…