Question Number 201427 by mathlove last updated on 06/Dec/23 $$\begin{cases}{{sin}\left({x}+{y}\right)={cos}\left({x}−{y}\right)}\\{{tanx}−{tany}=\mathrm{1}}\end{cases} \\ $$$$\left({x},{y}\right)=\left(?,?\right) \\ $$ Answered by Rasheed.Sindhi last updated on 06/Dec/23 $$\begin{cases}{{sin}\left({x}+{y}\right)={cos}\left({x}−{y}\right)…\left({i}\right)}\\{{tanx}−{tany}=\mathrm{1}………\left({ii}\right)}\end{cases} \\ $$$$\left({x},{y}\right)=\left(?,?\right) \\…
Question Number 201452 by tri26112004 last updated on 06/Dec/23 Answered by Calculusboy last updated on 06/Dec/23 $$\int\boldsymbol{{x}}^{−\mathrm{2}} \boldsymbol{{e}}^{−\mathrm{4}\boldsymbol{{x}}} \boldsymbol{{dx}} \\ $$$$\boldsymbol{{Solution}}:\:\:\boldsymbol{{by}}\:\boldsymbol{{using}}\:\boldsymbol{{IBP}} \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{u}}=\boldsymbol{{e}}^{−\mathrm{4}\boldsymbol{{x}}} \:\:\:\boldsymbol{{du}}=−\mathrm{4}\boldsymbol{{e}}^{−\mathrm{4}\boldsymbol{{x}}} \boldsymbol{{dx}}\:\:\boldsymbol{{dv}}=\boldsymbol{{x}}^{−\mathrm{2}}…
Question Number 201421 by mr W last updated on 06/Dec/23 Commented by mr W last updated on 06/Dec/23 Commented by mr W last updated on…
Question Number 201418 by cortano12 last updated on 06/Dec/23 $$\:\:\:\:\:\:\mathrm{2025}^{\mathrm{2025}} \:=\:\mathrm{x}\:\left(\mathrm{mod}\:\mathrm{17}\:\right) \\ $$ Answered by mr W last updated on 06/Dec/23 $$\mathrm{2025}^{\mathrm{2025}} \:\left({mod}\:\mathrm{17}\right) \\ $$$$=\left(\mathrm{119}×\mathrm{17}+\mathrm{2}\right)^{\mathrm{2025}}…
Question Number 201445 by emilagazade last updated on 06/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 201446 by AROUNAMoussa last updated on 06/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 201447 by AROUNAMoussa last updated on 06/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 201473 by MrGHK last updated on 06/Dec/23 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{Li}}_{\mathrm{3}} \left(−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 201441 by dimentri last updated on 06/Dec/23 $${Let}\:{f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{be}\:{given}\:{by}\: \\ $$$$\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{x}−\mathrm{2}}\:+\frac{\mathrm{1}}{{x}−\mathrm{4}}\:+\:…\:+\frac{\mathrm{1}}{{x}−\mathrm{2018}} \\ $$$$\:{and}\: \\ $$$$\:\:{g}\left({x}\right)=\frac{\mathrm{1}}{{x}−\mathrm{1}}\:+\frac{\mathrm{1}}{{x}−\mathrm{3}}\:+\frac{\mathrm{1}}{{x}−\mathrm{5}}\:+…+\:\frac{\mathrm{1}}{{x}−\mathrm{2017}}. \\ $$$$\:\:{Prove}\:{that}\:\:\mid\:{f}\left({x}\right)−{g}\left({x}\right)\mid\:>\mathrm{2} \\ $$$$\:\:{for}\:{any}\:{non}−{integer}\:{real}\:{number} \\ $$$$\:\:{x}\:{satisfying}\:\mathrm{0}<{x}<\mathrm{2018}.\: \\ $$ Answered…
Question Number 201475 by Ari last updated on 06/Dec/23 Commented by mr W last updated on 07/Dec/23 $${i}\:{think}\:{something}\:{is}\:{wrong}\:{with}\:{the} \\ $$$${question}!\:{please}\:{check}\:{it}! \\ $$$${there}\:{are}\:{infinite}\:{right}\:{triangles} \\ $$$${with}\:{height}\:{of}\:\mathrm{21}\:{cm}. \\…