Question Number 213862 by issac last updated on 19/Nov/24 $$\mathrm{Help}\:\mathrm{me}…..!!!\:\::\left(\:\:\right. \\ $$$$\mathrm{complex}\:\mathrm{anaylsis}\:\mathrm{problem}.. \\ $$$${f}\left({z}\right)\:\mathrm{is}\:\mathrm{entire}\:\mathrm{in}\:\mathrm{path}\:{C}\: \\ $$$$\mathrm{entire}:\:\mathrm{Differantiable}\:\mathrm{complex}\:\mathrm{function} \\ $$$$\mathrm{mean}\:{f}\left({z}\right)\:\mathrm{satisfy}\:{f}\left({z}\right)={u}\left({x},{y}\right)+\boldsymbol{{i}}\centerdot{v}\left({x},{y}\right)\:\: \\ $$$$\frac{\partial{u}}{\partial{x}}=−\frac{\partial{v}}{\partial{y}}\:\mathrm{or}\:\:\frac{\partial{u}}{\partial{y}}=−\frac{\partial{v}}{\partial{x}}\:\left(\mathrm{couchy}-\mathrm{riemann}\right) \\ $$$$\mathrm{show}\:\mathrm{that}\:\int_{\:{C}} \:\frac{{f}\left({z}\right)}{{f}'\left({z}\right)}\:\mathrm{d}{z}=\mathrm{2}\pi\boldsymbol{{i}}\underset{{h}=\mathrm{1}} {\overset{{M}} {\sum}}\:{P}_{{h}}…
Question Number 213859 by ajfour last updated on 19/Nov/24 Commented by mr W last updated on 19/Nov/24 $$\mathrm{0}<{AB}<\mathrm{1} \\ $$$${no}\:{maximum}\:{or}\:{minimum}\:{exists}. \\ $$ Commented by ajfour…
Question Number 213838 by ajfour last updated on 18/Nov/24 Commented by ajfour last updated on 18/Nov/24 $${A}\:{solid}\:{ball}\:{is}\:{released}\:{over}\:{a}\:{fixed} \\ $$$${cylindrical}\:{wedge}\:{as}\:{shown}.\:{Friction} \\ $$$${is}\:{sufficient}.\:{If}\:{just}\:{after}\:{the}\:{ball} \\ $$$${leaves}\:{the}\:{curved}\:{surface}\:{due}\:{to} \\ $$$${Normal}\:{reaction}\:{vanishing},\:{it}\:…
Question Number 213835 by BaliramKumar last updated on 18/Nov/24 Answered by mehdee7396 last updated on 18/Nov/24 $${OA}=\sqrt{\mathrm{13}}\:\:\&\:\:\:{OB}=\mathrm{3} \\ $$$${sin}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\Rightarrow{cos}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}} \\ $$$$\Rightarrow{tan}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}\Rightarrow\theta=\mathrm{2}{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}}\:\:\checkmark \\ $$$$ \\…
Question Number 213844 by universe last updated on 18/Nov/24 $$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\…
Question Number 213846 by issac last updated on 18/Nov/24 $$\mathrm{path}\:\mathscr{C}\:\mathrm{is}\:\mathrm{closed} \\ $$$${f}\:\mathrm{is}\:\mathrm{regular}\:\mathrm{function}\:\mathrm{in}\:\mathrm{Path}\:\mathscr{C} \\ $$$${f}\:\mathrm{is}\:\mathrm{have}\:\mathrm{zero}\:\mathrm{point}\:\mathrm{and}\:\mathrm{poles}\:\mathrm{in}\:\mathscr{C} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\oint_{\:\mathscr{C}} \:\frac{{f}\left({z}\right)}{{f}'\left({z}\right)}\:\mathrm{d}{z}=\mathrm{2}\pi\boldsymbol{{i}}\left({Z}−{P}\right) \\ $$$$\mathrm{and}\:\mathrm{if}\:\mathrm{poles}\:\mathrm{are}\:\mathrm{not}\:\mathrm{exist} \\ $$$$\mathrm{show}\:\mathrm{that} \\ $$$$\oint_{\:\mathscr{C}\:}…
Question Number 213841 by mnjuly1970 last updated on 18/Nov/24 $$ \\ $$$$\:\:{Find}\:{the}\:{vertical}\:{asymptots} \\ $$$$\: \\ $$$$\:\:{of}\:\:,\:\:\:{f}\left({x}\right)=\:\mathrm{tan}\left(\frac{\:\pi}{\mathrm{2}{x}\:+\:\mathrm{2}}\:\right)\:\:{in}\: \\ $$$$\: \\ $$$$\:\:\:\:\:\left[\:\mathrm{0}\:\:,\:\:\:\mathrm{4}\:\right] \\ $$$$\:−−−−−−−−−−−−− \\ $$$$ \\…
Question Number 213821 by hardmath last updated on 17/Nov/24 $$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)^{\frac{\mathrm{sinx}}{\mathrm{x}\:−\:\mathrm{sinx}}} \:\:=\:\:? \\ $$ Answered by mehdee7396 last updated on 17/Nov/24 $${lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{{sinx}}{{x}}−\mathrm{1}\right)\frac{{sinx}}{{x}−{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}}…
Question Number 213817 by essaad last updated on 17/Nov/24 Commented by essaad last updated on 17/Nov/24 numenclature stp Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213818 by ajfour last updated on 17/Nov/24 Commented by ajfour last updated on 17/Nov/24 $${Find}\:{R}\:{in}\:{terms}\:{smaller}\:{radii}\:{a},\:{b}. \\ $$ Answered by mr W last updated…