Menu Close

Author: Tinku Tara

Question-200958

Question Number 200958 by Mastermind last updated on 27/Nov/23 Answered by AST last updated on 27/Nov/23 $${ax}+{by}={c}; \\ $$$${a}=\mathrm{1},{b}=\mathrm{1},{c}={sin}\left(\frac{\pi}{\mathrm{6}}\right) \\ $$$${a}=\mathrm{1}−{sin}\left(\frac{\pi}{\mathrm{6}}\right);{b}=\mathrm{1};{c}=\mathrm{1} \\ $$ Answered by…

Question-200980

Question Number 200980 by sonukgindia last updated on 27/Nov/23 Answered by MM42 last updated on 27/Nov/23 $$\sqrt{{x}+\sqrt{{x}+\sqrt{{x}…}}}={y}\Rightarrow\:{x}={y}^{\mathrm{2}} −{y}\Rightarrow{dx}=\left(\mathrm{2}{y}−\mathrm{1}\right){dy} \\ $$$${y}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{x}}}{\mathrm{2}}\:\:\:\:\:\Rightarrow\:\:\:{x}=\mathrm{0}\rightarrow{y}=\mathrm{1}\:\:\:\:;\:\:{x}=\mathrm{1}\rightarrow{y}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\left.\Rightarrow\int_{\mathrm{1}} ^{\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}} \:\:\frac{\mathrm{2}{y}−\mathrm{1}}{{y}}\:{dy}\:=\left(\mathrm{2}{y}−{lny}\right)\right]_{\mathrm{1}} ^{\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}…

Question-200976

Question Number 200976 by Blackpanther last updated on 27/Nov/23 Answered by Mathspace last updated on 28/Nov/23 $$\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{cos}\left({n}\pi\right)}{{ln}\mathrm{3}}=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{ln}\mathrm{3}} \\ $$$${lim}_{{n}\rightarrow\infty} \left(−\mathrm{1}\right)^{{n}}…

Question-200978

Question Number 200978 by sonukgindia last updated on 27/Nov/23 Answered by BaliramKumar last updated on 27/Nov/23 $$\mathrm{put}\:\:\:\mathrm{x}\:=\:\mathrm{tan}\theta\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\mathrm{dx}\:=\:\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{tan}^{\mathrm{2}} \theta+\mathrm{1}}}\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\int\:\mathrm{sec}\theta\mathrm{d}\theta\:=\:\mathrm{ln}\left(\mathrm{sec}\theta\:+\:\mathrm{tan}\theta\right) \\…

Question-200972

Question Number 200972 by Mingma last updated on 27/Nov/23 Answered by AST last updated on 27/Nov/23 $${a}^{\mathrm{2}} ={b}^{\mathrm{2}} \left({b}+\mathrm{2}\right);{a}={b}\sqrt{{b}+\mathrm{2}} \\ $$$${b}=\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} −\mathrm{2}\Rightarrow\left({a},{b}\right)=\left(\frac{{x}^{\mathrm{3}} −\mathrm{2}{xy}^{\mathrm{2}} }{{y}^{\mathrm{3}} },\frac{{x}^{\mathrm{2}}…