Menu Close

Author: Tinku Tara

Question-200873

Question Number 200873 by cortano12 last updated on 25/Nov/23 Commented by witcher3 last updated on 26/Nov/23 $$\mathrm{tan}\left(\frac{\mathrm{3x}}{\mathrm{2}}\right)\in\left[−\sqrt{\mathrm{3}},\sqrt{\mathrm{3}}\right] \\ $$$$\mathrm{tg}\left(\mathrm{3}.\frac{\mathrm{x}}{\mathrm{2}}\right)=\frac{\mathrm{3tg}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\mathrm{tg}^{\mathrm{3}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{3tg}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)} \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\sqrt{\mathrm{3}−\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{3x}}{\mathrm{2}}\right)}=\mathrm{2}+\mathrm{cos}\left(\mathrm{x}\right) \\…

lim-x-xE-x-3-x-2-sin-x-

Question Number 200864 by Rydel last updated on 25/Nov/23 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{xE}\left({x}\right)+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{sin}\:{x}}} \\ $$ Answered by Mathspace last updated on 25/Nov/23 $$={lim}_{{x}\rightarrow+\infty} \frac{{xE}\left({x}\right)+\mathrm{3}}{{x}\sqrt{\mathrm{1}+\frac{{sinx}}{{x}^{\mathrm{2}} }}} \\…

Question-200856

Question Number 200856 by sonukgindia last updated on 24/Nov/23 Commented by mr W last updated on 24/Nov/23 $${R}=\mathrm{1}\:{cm}\:={bigger}\:{radius} \\ $$$${r}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{cm}\:={smaller}\:{radius} \\ $$$${yellow}\:{area}={R}×{r}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{cm}^{\mathrm{2}} \\ $$ Terms…

Let-abc-bca-cab-defg-where-a-b-g-are-decimal-digits-may-be-equal-to-0-Show-that-i-dg-a-b-c-ii-e-f-d-g-

Question Number 200836 by Rasheed.Sindhi last updated on 24/Nov/23 $$ \\ $$$$\mathcal{L}{et}\overline {\:{abc}\:}+\overline {\:{bca}\:}+\overline {\:{cab}\:}=\overline {\:{defg}\:} \\ $$$${where}\:{a},{b},…,{g}\:{are}\:{decimal}\:{digits} \\ $$$$\left({may}\:{be}\:{equal}\:{to}\:\mathrm{0}\right)\: \\ $$$${Show}\:{that} \\ $$$$\left({i}\right)\overline {\:{dg}\:}={a}+{b}+{c}…