Menu Close

Author: Tinku Tara

Prove-that-ln-13-1-10-13-2-gt-0-without-calculator-

Question Number 212098 by CrispyXYZ last updated on 30/Sep/24 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{ln}\:\frac{\sqrt{\mathrm{13}}−\mathrm{1}}{\mathrm{10}}\:+\:\sqrt{\mathrm{13}}\:−\:\mathrm{2}\:>\mathrm{0} \\ $$$$\mathrm{without}\:\mathrm{calculator}. \\ $$ Answered by MrGaster last updated on 03/Nov/24 $$\mathrm{ln}\left(\sqrt{\mathrm{13}}−\mathrm{1}\right)−\mathrm{ln}\:\mathrm{10}+\sqrt{\mathrm{13}}−\mathrm{2}>\mathrm{0} \\…

Question-212099

Question Number 212099 by vahid last updated on 30/Sep/24 Answered by mehdee7396 last updated on 30/Sep/24 $$\int\frac{\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx}\:\:\:\:\:;\:{let}\:\:\:{tan}\frac{{x}}{\mathrm{2}}={u} \\ $$$$=\int\frac{\mathrm{2}{u}}{\mathrm{1}−{u}^{\mathrm{2}} }{du}={ln}\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}+{c} \\ $$$$={ln}\left({tan}\left(\frac{\pi}{\mathrm{4}}+\frac{{x}}{\mathrm{2}}\right)\right)+{c}\:\:\checkmark \\…

1-1-2-1-3-1-4-1-1000000-note-6-25-6-0-47-0-

Question Number 212094 by behi834171 last updated on 29/Sep/24 $$\left[\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}}}+…….+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1000000}}}\right]=? \\ $$$$\boldsymbol{{note}}:\:\:\:\left[\mathrm{6}.\mathrm{25}\right]=\mathrm{6}\:\:\:,\left[\mathrm{0}.\mathrm{47}\right]=\mathrm{0} \\ $$ Answered by fabricio2008 last updated on 30/Sep/24 $$\underset{{x}=\mathrm{1}} {\overset{\mathrm{10}^{\mathrm{6}} } {\sum}}\left(\sqrt{{x}}\right)^{-\mathrm{1}}…