Menu Close

Author: Tinku Tara

Find-3-6-9-96-99-

Question Number 200438 by hardmath last updated on 18/Nov/23 $$\mathrm{Find}: \\ $$$$\sqrt{\mathrm{3}\:+\:\sqrt{\mathrm{6}\:+\:\sqrt{\mathrm{9}\:+\:…\:+\:\sqrt{\mathrm{96}\:+\:\sqrt{\mathrm{99}}}}}}\:=\:? \\ $$ Commented by Frix last updated on 19/Nov/23 $$\mathrm{There}'\mathrm{s}\:\mathrm{nothing}\:\mathrm{to}\:\mathrm{find},\:\mathrm{just}\:\mathrm{use}\:\mathrm{a}\:\mathrm{good} \\ $$$$\mathrm{calculator}. \\…

Question-200432

Question Number 200432 by galivan last updated on 18/Nov/23 Commented by mr W last updated on 19/Nov/23 $${it}\:{seems}\:{you}\:{are}\:{using}\:{the}\:{forum}\:{just} \\ $$$${for}\:{editing}\:{and}\:{storing}\:{your}\:{own} \\ $$$${formulas}.\:{please}\:{use}\:{the}\:{editor} \\ $$$${function}\:{of}\:{this}\:{app}\:{for}\:{such}\:{purpose}! \\…

Question-200428

Question Number 200428 by Spillover last updated on 18/Nov/23 Answered by ajfour last updated on 18/Nov/23 $${F}={mg}−\frac{{kv}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{vdv}}{{dx}}={g}−\frac{{kv}^{\mathrm{2}} }{\mathrm{2}{m}}=−\frac{{k}}{\mathrm{2}{m}}\left({v}^{\mathrm{2}} −\frac{\mathrm{2}{mg}}{{k}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:{v}}…

Question-200424

Question Number 200424 by hardmath last updated on 18/Nov/23 Commented by Frix last updated on 18/Nov/23 $$\mathrm{This}\:\mathrm{is}\:\mathrm{soft}\:\mathrm{math}… \\ $$$$\Omega=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$ Commented by hardmath last…

find-1-x-1-x-2-dx-

Question Number 200417 by hardmath last updated on 18/Nov/23 $$\mathrm{find}:\:\:\:\Omega\:=\:\int_{\mathrm{1}} ^{\:\infty} \:\frac{\sqrt{\mathrm{x}}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{dx}\:=\:? \\ $$ Answered by witcher3 last updated on 18/Nov/23 $$\sqrt{\mathrm{x}}=\mathrm{y} \\ $$$$=\int_{\mathrm{1}}…

calculus-I-If-I-0-pi-x-1-sin-2-x-dx-a-2-a-where-s-n-1-1-n-s-

Question Number 200418 by mnjuly1970 last updated on 18/Nov/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{calculus}\:\:\left(\:\:\mathrm{I}\:\:\right)\:\: \\ $$$$\:\:\mathrm{I}{f}\:,\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\pi} \:\frac{\:{x}\:}{\mathrm{1}\:\:+\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)}\:\mathrm{d}{x}\:=\:{a}\:\zeta\:\left(\:\mathrm{2}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{a}\:=\:?\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:{where}\:\:,\:\:\:\zeta\:\left({s}\:\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\mathrm{1}}{{n}^{\:{s}} } \\…