Question Number 212007 by Nadirhashim last updated on 26/Sep/24 $$\:\:\:\:\int\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:\sqrt[{\mathrm{3}}]{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}} \\ $$ Answered by Ghisom last updated on 26/Sep/24 $$=\int\left(\mathrm{cos}\:{x}\right)^{−\mathrm{1}/\mathrm{3}} \left(\mathrm{sin}\:{x}\right)^{\mathrm{4}/\mathrm{3}} {dx}= \\ $$$$=\frac{\mathrm{3}}{\mathrm{7}}\:_{\mathrm{2}} {F}_{\mathrm{1}}…
Question Number 212001 by mnjuly1970 last updated on 26/Sep/24 $$ \\ $$$$\:\:\:\:{prove}\:\:{that}: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\underset{{k}\in\mathbb{Z}} {\sum}\:\frac{\:\left(−\mathrm{1}\right)^{{k}} }{\:{x}\:+\:{k}\pi}\:=\:\frac{\mathrm{1}}{{sin}\left({x}\right)}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered…
Question Number 212002 by universe last updated on 26/Sep/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 211949 by Spillover last updated on 25/Sep/24 Answered by MathematicalUser2357 last updated on 26/Sep/24 $$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{integration}\:\mathrm{idea}! \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\mathrm{ln}\left(\frac{{ax}^{\mathrm{2}} +\sqrt{\mathrm{2}{a}}{x}+\mathrm{1}}{{ax}^{\mathrm{2}} −\sqrt{\mathrm{2}{a}}{x}+\mathrm{1}}\right){dx}=\mathrm{4}\pi\:\mathrm{cot}^{−\mathrm{1}} \sqrt{\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}+\mathrm{1}}{{a}}}…
Question Number 211944 by liuxinnan last updated on 25/Sep/24 $$ \\ $$$${f}\left({x}\right)=\frac{\sqrt{\mathrm{1}+{x}}−\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}}\:\:\:\:{f}^{'} \left({x}\right)=? \\ $$$$ \\ $$$$ \\ $$ Answered by efronzo1 last updated on…
Question Number 211961 by Nadirhashim last updated on 25/Sep/24 $$\:\:\:\boldsymbol{{if}}\:\:\:\mathrm{7}^{\boldsymbol{{sin}}^{\mathrm{2}\:} \boldsymbol{{x}}} +\:\mathrm{7}^{\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{{x}}} =\:\mathrm{8}\:\boldsymbol{{find}}\:\boldsymbol{{x}} \\ $$ Answered by efronzo1 last updated on 25/Sep/24 $$\:\:\mathrm{7}^{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}…
Question Number 211946 by BaliramKumar last updated on 25/Sep/24 Answered by BHOOPENDRA last updated on 25/Sep/24 $$\left(\mathrm{2}+\mathrm{3}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{9}^{\mathrm{2}} =\mathrm{81} \\ $$ Commented by BHOOPENDRA last…
Question Number 211979 by Spillover last updated on 25/Sep/24 Answered by BHOOPENDRA last updated on 25/Sep/24 $$\int\frac{{dx}}{\left({x}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} {x}+\mathrm{tan}^{−\mathrm{1}} {x}\:+{x}^{\mathrm{2}} \pi+\pi\right)} \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{tan}^{−\mathrm{1}} {x}+\pi\right)}…
Question Number 211956 by Durganand last updated on 25/Sep/24 Answered by Frix last updated on 25/Sep/24 $$\mathrm{tan}\:\alpha\:={t}\:\:\:\:\:\mathrm{tan}\:\mathrm{2}\alpha\:=\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\:\:\:\:\mathrm{sin}\:\mathrm{2}\alpha\:=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}{t}}=\frac{\mathrm{2}−\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\mathrm{2}{t}}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{2}{t}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2}\alpha} \\…
Question Number 211943 by Frix last updated on 25/Sep/24 $$\mathrm{2}^{{m}−\mathrm{1}} =\mathrm{1}+{mn} \\ $$$${m},\:{n}\:\in\mathbb{Z} \\ $$ Commented by BHOOPENDRA last updated on 25/Sep/24 $$\left\{\left({m},{n}\right)\in\mathbb{Z}×\mathbb{Z}\:\mid\:{m}\:{is}\:{odd}\:\&{n}=\frac{\mathrm{2}^{{m}−\mathrm{1}} −\mathrm{1}}{{m}}\right\} \\…