Menu Close

Author: Tinku Tara

Question-200300

Question Number 200300 by Calculusboy last updated on 16/Nov/23 Answered by MM42 last updated on 17/Nov/23 $${lnA}={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\:\left[{ln}\left(\mathrm{1}+\left(\frac{\mathrm{1}}{{n}}\right)^{\mathrm{1}} \right)+{ln}\left(\mathrm{1}+\left(\frac{\mathrm{2}}{{n}}\right)^{\mathrm{2}} +…+{ln}\left(\mathrm{1}+\left(\frac{{n}}{{n}}\right)^{\mathrm{2}} \right)\right.\right. \\ $$$$={lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{{n}}\:\underset{{i}=\mathrm{1}} {\overset{{n}}…

Question-200302

Question Number 200302 by Calculusboy last updated on 16/Nov/23 Answered by Rasheed.Sindhi last updated on 18/Nov/23 $$\sqrt{{a}+{bx}}\:+\sqrt{{b}+{cx}}\:+\sqrt{{c}+{ax}}\:\:=\sqrt{{b}−{ax}}\:+\sqrt{{c}−{bx}}\:+\sqrt{{a}−{cx}}\: \\ $$$${a}+{bx}\geqslant\mathrm{0}\:\wedge\:{b}+{cx}\geqslant\mathrm{0}\:\wedge\:{c}+{ax}\geqslant\mathrm{0} \\ $$$$\left({a}+{b}+{c}\right)+\left({a}+{b}+{c}\right){x}\geqslant\mathrm{0}\Rightarrow{x}\geqslant−\frac{{a}+{b}+{c}}{{a}+{b}+{c}}=−\mathrm{1} \\ $$$$\begin{array}{|c|}{{x}\geqslant−\mathrm{1}}\\\hline\end{array} \\ $$$${b}−{ax}\geqslant\mathrm{0}\:\wedge\:{c}−{bx}\geqslant\mathrm{0}\:\wedge\:{a}−{cx}\geqslant\mathrm{0}…

Question-200299

Question Number 200299 by Calculusboy last updated on 16/Nov/23 Answered by witcher3 last updated on 17/Nov/23 $$\mathrm{x}\rightarrow\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\Omega=\int_{\infty} ^{\mathrm{0}} −\frac{\frac{\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)}{\mathrm{x}}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} }.\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{2}}…

Question-200275

Question Number 200275 by sonukgindia last updated on 16/Nov/23 Answered by Mathspace last updated on 16/Nov/23 $${I}=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{{a}^{\mathrm{2}} −\mathrm{2}{acosx}+\mathrm{1}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\frac{{e}^{{ix}}…

Question-200265

Question Number 200265 by cherokeesay last updated on 16/Nov/23 Answered by witcher3 last updated on 16/Nov/23 $$\begin{cases}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}\right)^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{2}.\mathrm{5}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}\right)=\mathrm{0}}\\{\left(\mathrm{2}\right)\Leftrightarrow\left(\mathrm{2}\right)}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{0}}\\{\sqrt{\left(\mathrm{x}^{\mathrm{2}}…