Menu Close

Author: Tinku Tara

Question-211873

Question Number 211873 by Spillover last updated on 22/Sep/24 Answered by IbtisamAdnan last updated on 23/Sep/24 $$\:\:\:\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{4}} \frac{\left(\boldsymbol{\mathrm{cos}\alpha}\right)^{\mathrm{x}} −\left(\mathrm{sin}\alpha\right)^{\mathrm{x}} −\mathrm{cos}\:\mathrm{2}\alpha}{\mathrm{x}−\mathrm{4}} \\ $$$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{4}} \:\frac{\left(\boldsymbol{\mathrm{cos}\alpha}\right)^{\mathrm{x}} .\:\mathrm{ln}\:\mathrm{cos}\alpha\:\:−\:\left(\mathrm{sin}\:\alpha\right)^{\mathrm{x}} .\mathrm{ln}\:\mathrm{sin}\alpha}{\mathrm{1}}\left[\mathrm{L}\:\mathrm{hospital}\:\mathrm{rule}\right]…

set-x-y-z-x-2-y-2-z-2-1-certificate-4-3-2-1-3-x-2y-2z-5-1-3-dv-8-3-

Question Number 211800 by MrGaster last updated on 21/Sep/24 $$ \\ $$$$\boldsymbol{{set}}\:\boldsymbol{\Omega}=\left\{\left(\boldsymbol{{x}},\boldsymbol{{y}},\boldsymbol{{z}}\right)\mid\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \leq\mathrm{1}\right\}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{certificat}}\mathrm{e}: \\ $$$$\:\:\frac{\mathrm{4}\boldsymbol{\pi}}{\mathrm{3}}\sqrt[{\mathrm{3}}]{\mathrm{2}}\leq\int\underset{\boldsymbol{\Omega}} {\int}\int\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}+\mathrm{2}\boldsymbol{{y}}−\mathrm{2}\boldsymbol{{z}}+\mathrm{5}}\boldsymbol{{dv}}\leq\frac{\mathrm{8}\boldsymbol{\pi}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\…

prove-lim-x-1-5-x-1-x-1-5-

Question Number 211812 by mokys last updated on 21/Sep/24 $${prove}\:\underset{{x}\rightarrow\infty} {{lim}}\:\left(\:\mathrm{1}\:+\:\frac{\mathrm{5}}{{x}}\:\right)^{\frac{\mathrm{1}}{{x}}} −\:\mathrm{1}\:=\:\mathrm{5}\: \\ $$ Commented by mr W last updated on 22/Sep/24 $${wrong}! \\ $$$${the}\:{result}\:{should}\:{be}\:\mathrm{0}.…

Question-211796

Question Number 211796 by Spillover last updated on 21/Sep/24 Answered by Ghisom last updated on 21/Sep/24 $$\int\sqrt{\frac{\mathrm{cos}\:\left({x}−{a}\right)}{\mathrm{sin}\:\left({x}+{a}\right)}}{dx}= \\ $$$$=\int\sqrt{\frac{\mathrm{cos}\:{a}\:\mathrm{cos}\:{x}\:+\mathrm{sin}\:{a}\:\mathrm{sin}\:{x}}{\mathrm{sin}\:{a}\:\mathrm{cos}\:{x}\:+\mathrm{cos}\:{a}\:\mathrm{sin}\:{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\right] \\ $$$$=\int\sqrt{\frac{{t}\mathrm{sin}\:{a}\:+\mathrm{cos}\:{a}}{{t}\mathrm{cos}\:{a}\:+\mathrm{sin}\:{a}}}×\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}= \\…

Question-211797

Question Number 211797 by Spillover last updated on 21/Sep/24 Answered by Ghisom last updated on 21/Sep/24 $$\int\frac{\sqrt{\mathrm{cot}\:{x}}−\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\mathrm{3sin}\:\mathrm{2}{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\mathrm{tan}\:{x}}\right] \\ $$$$=−\mathrm{2}\int\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{6}{t}^{\mathrm{2}} +\mathrm{1}}{dt}= \\…

Question-211798

Question Number 211798 by Spillover last updated on 21/Sep/24 Answered by Ghisom last updated on 22/Sep/24 $$\frac{\mathrm{e}^{\mathrm{cos}\:{x}} \left({x}\mathrm{sin}^{\mathrm{3}} \:{x}\:+\mathrm{cos}\:{x}\right)}{\mathrm{sin}^{\mathrm{2}} \:{x}}= \\ $$$$=\mathrm{e}^{\mathrm{cos}\:{x}} {x}\mathrm{sin}\:{x}\:+\frac{\mathrm{e}^{\mathrm{cos}\:{x}} \mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}=…

ax-2-bx-c-0-has-roots-and-and-show-that-b-2-ac-2-

Question Number 211815 by alcohol last updated on 21/Sep/24 $${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0}\:{has}\:{roots}\:\alpha\:{and}\:\beta \\ $$$${and}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu}.\:{show}\:{that}\:\lambda\mu{b}^{\mathrm{2}} \:=\:{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \\ $$ Answered by som(math1967) last updated on 22/Sep/24 $$\:{let}\:\alpha={k}\lambda\:,\:\beta={k}\mu \\…