Question Number 211552 by Saqibraza last updated on 12/Sep/24 $$\frac{\mathrm{3}}{\boldsymbol{{x}}−\mathrm{6}}−\frac{\mathrm{4}}{} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 211513 by Davidtim last updated on 11/Sep/24 $${why}\:{we}\:{use}\:{Ampier}\:{meter}\:{sequence} \\ $$$${with}\:{resistance}\:{in}\:{circuit}? \\ $$ Commented by Frix last updated on 11/Sep/24 $$\mathrm{Because} \\ $$$$\mathrm{Ohm}=\frac{\mathrm{Volt}}{\mathrm{Ampere}} \\…
Question Number 211515 by Davidtim last updated on 11/Sep/24 $${for}\:{example}\:{I}\:{say}\:{Bob}\:{is}\:{born}\:{in} \\ $$$$\mathrm{1900}{s},\:{there}\:{the}\:{symbol}\:{of}\:\left({s}\right)\:{means} \\ $$$${century}.\:{what}\:{kind}\:{of}\:{word}\:{it}\:{taken} \\ $$$${from}? \\ $$ Commented by Frix last updated on 11/Sep/24…
Question Number 211508 by MATHEMATICSAM last updated on 11/Sep/24 $$\mathrm{If}\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}\:−\:{y}^{\mathrm{2}} }\:=\:{a}\left({x}\:−\:{y}\right)\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\frac{{dy}}{{dx}}\:=\:\sqrt{\frac{\mathrm{1}\:−\:{y}^{\mathrm{2}} }{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:}\:. \\ $$ Commented by Frix last updated on 11/Sep/24…
Question Number 211509 by RojaTaniya last updated on 11/Sep/24 Answered by A5T last updated on 11/Sep/24 $$\frac{\mathrm{6}{a}+{b}}{\mathrm{6}{c}+{d}}={k}=\frac{\mathrm{5}{a}+{b}}{\mathrm{5}{c}+{d}} \\ $$$$\Rightarrow\mathrm{6}{a}+{b}=\mathrm{6}{ck}+{dk}…\left({i}\right);\mathrm{5}{a}+{b}=\mathrm{5}{ck}+{dk}…\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right)\Rightarrow{a}={ck};\mathrm{6}\left({ii}\right)−\mathrm{5}\left({i}\right)\Rightarrow{b}={dk} \\ $$$$\mathrm{7}{a}+{b}=\mathrm{8}\left(\mathrm{7}{c}+{d}\right)\Rightarrow\mathrm{7}{ck}+{dk}=\mathrm{8}\left(\mathrm{7}{c}+{d}\right) \\ $$$$\Rightarrow{k}=\frac{\mathrm{8}\left(\mathrm{7}{c}+{d}\right)}{\mathrm{7}{c}+{d}}=\mathrm{8}…
Question Number 211502 by MathematicalUser2357 last updated on 11/Sep/24 $$\mathrm{If}\:\begin{cases}{{f}\left({x}\right)={x}^{\mathrm{2}} }\\{{g}\left({x}\right)=\mathrm{sin}\:{x}}\end{cases}, \\ $$$$\mathrm{Then}\:\mathrm{find}\:\frac{{df}}{{dg}}. \\ $$ Answered by a.lgnaoui last updated on 11/Sep/24 $$\frac{\mathrm{df}}{\mathrm{dg}}=\frac{\mathrm{df}}{\mathrm{dx}}×\frac{\mathrm{dx}}{\mathrm{dg}}.=\:\:\frac{\mathrm{f}^{'} }{\mathrm{g}'} \\…
Question Number 211496 by RojaTaniya last updated on 11/Sep/24 Answered by som(math1967) last updated on 11/Sep/24 $$\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{sin}\mathrm{20}{sin}\mathrm{40}+\mathrm{2}{sin}\mathrm{20}{sin}\mathrm{60}+\mathrm{2}{sin}\mathrm{20}{sin}\mathrm{80}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\mathrm{20}−{cos}\mathrm{60}+{cos}\mathrm{40}−{cos}\mathrm{80}+{cos}\mathrm{60}−{cos}\mathrm{100}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\mathrm{20}+{cos}\mathrm{40}−{cos}\mathrm{80}+{cos}\mathrm{80}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{cos}\mathrm{30}{cos}\mathrm{10} \\ $$$$={sin}\mathrm{60}{sin}\mathrm{80}…
Question Number 211492 by swargiya last updated on 11/Sep/24 Commented by MathematicalUser2357 last updated on 12/Sep/24 $$ \:\mathrm{sin}^{−\mathrm{1}} {x}−\mathrm{cos}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{6}}\: ,\: \:{x}\: \: \: \\…
Question Number 211495 by BaliramKumar last updated on 11/Sep/24 Answered by Rasheed.Sindhi last updated on 11/Sep/24 $${Let}\:{n}=\mathrm{10}{m} \\ $$$${HCF}\left(\mathrm{10}{m},\mathrm{10}\left({m}+\mathrm{1}\right)\right)=\mathrm{10} \\ $$$${HCF}\left({m},{m}+\mathrm{1}\right)=\mathrm{1}\Rightarrow{m}=\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},… \\ $$$$\therefore{LCM}={x}\left(\mathrm{2}-{digit}\:{numbers}\right)=\mathrm{10}{m}\left({m}+\mathrm{1}\right)\: \\ $$$$\:\:\:\:\:\:=\mathrm{20},\mathrm{60}\:\left(\mathrm{2}\:{possible}\:{values}\right)…
Question Number 211520 by a.lgnaoui last updated on 12/Sep/24 $$\mathrm{determiner}\:\mathrm{les}\:\mathrm{valeurs}\:\:\mathrm{de}\:\boldsymbol{\mathrm{p}}\mathrm{et}\:\boldsymbol{\mathrm{q}}\:\mathrm{sachant}\:\mathrm{que}\:−\mathrm{2}\:\mathrm{et}\:\mathrm{3}\:\mathrm{sont}\:\mathrm{les}\: \\ $$$$−\mathrm{2}\:\mathrm{et}\:\mathrm{3}\:\:\mathrm{sont}\:\mathrm{les}\:\mathrm{racines}\:\mathrm{de}\:\mathrm{l}\:\mathrm{equation}: \\ $$$$\mathrm{2}\boldsymbol{\mathrm{pqz}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{\mathrm{z}}−\mathrm{4}\left(\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}\right)=\mathrm{0} \\ $$$$ \\ $$ Commented by MrGaster last updated on…