Question Number 199413 by universe last updated on 03/Nov/23 Answered by ajfour last updated on 03/Nov/23 $${b}\mathrm{cos}\:\alpha={R} \\ $$$$\left\{{R}\mathrm{tan}\:\alpha+\left(\frac{{a}}{{b}}\right){R}\right\}^{\mathrm{2}} +\left\{\left(\frac{{a}}{{b}}\right){R}\mathrm{tan}\:\alpha\right\}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${say}\:\:\:\mathrm{tan}\:\alpha={t} \\ $$$$\Rightarrow\:{t}^{\mathrm{2}}…
Question Number 199446 by Mathstar last updated on 03/Nov/23 $$\mathrm{53bxnx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199447 by jabarsing last updated on 03/Nov/23 $${b}_{{n}} ={sin}\left({a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}\right)\Rightarrow\:{S}_{{n}} =? \\ $$ Answered by aleks041103 last updated on 03/Nov/23 $${b}_{{n}} ={Im}\left({e}^{{i}\left({a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}\right)}…
Question Number 199405 by mnjuly1970 last updated on 03/Nov/23 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{calculate}\:… \\ $$$$\:\:\mathrm{Q}:\:\:\:\:\:\:\mathrm{I}{f}\:\:,\:\:\:{f}\left({x}\right)\:=\mathrm{2}\:{e}^{{x}} \:−\mathrm{1}\:+\:\lfloor{e}^{{x}} +\:\frac{\mathrm{3}}{\mathrm{2}}\:+\lfloor{e}^{{x}} \rfloor\:\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\:{f}\:^{−\mathrm{1}} \:\left(\:\frac{\pi}{\mathrm{4}}\:\right)\:=? \\ $$$$\:\:\:\:\: \\ $$ Answered…
Question Number 199432 by mr W last updated on 03/Nov/23 $${without}\:{using}\:{calculator}: \\ $$$${what}\:{is}\:{larger}?\:\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\:{or}\:\mathrm{log}_{\mathrm{3}} \:\mathrm{5}? \\ $$ Answered by witcher3 last updated on 03/Nov/23 $$\frac{\mathrm{ln}\left(\mathrm{3}\right)}{\mathrm{ln}\left(\mathrm{2}\right)},\frac{\mathrm{ln}\left(\mathrm{5}\right)}{\mathrm{ln}\left(\mathrm{3}\right)}…
Question Number 199433 by ajfour last updated on 03/Nov/23 Commented by ajfour last updated on 03/Nov/23 $${Outer}\:{figure}\:{is}\:{square}\:{of}\:{side}\:\boldsymbol{{a}}. \\ $$$${Coloured}\:{triangles}\:{are}\:{equilateral}. \\ $$$${Find}\:{radius}\:{of}\:{circle}\:{inscribed}. \\ $$ Answered by…
Question Number 199399 by Calculusboy last updated on 03/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{2}} \boldsymbol{{r}}+\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}=\mathrm{3} \\ $$$$\boldsymbol{{p}}+\boldsymbol{{r}}=\mathrm{11}\:\:\:\boldsymbol{{fund}}\:\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{r}}. \\ $$ Answered by mr W last updated on 03/Nov/23 $${one}\:{solution}\:\left({p}=\mathrm{9},\:{r}=\mathrm{2}\right)\:{can}\:{be}\:“{seen}'',…
Question Number 199424 by cortano12 last updated on 03/Nov/23 $$\:\:\:\boldsymbol{{x}} \\ $$ Answered by Frix last updated on 04/Nov/23 $${f}\left({x}\right)=\frac{\mathrm{cos}\:{x}}{\mathrm{3}}\left(\mathrm{6sin}^{\mathrm{3}} \:{x}\:−\mathrm{4sin}^{\mathrm{2}} \:{x}\:+\mathrm{1}\right) \\ $$$${f}'\left({x}\right)=−\mathrm{sin}\:{x}\:\left(\mathrm{1}−\mathrm{2sin}\:{x}\right)\left(\mathrm{3}−\mathrm{4sin}^{\mathrm{2}} \:{x}\right)…
Question Number 199458 by Calculusboy last updated on 03/Nov/23 $$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}\:+\:\boldsymbol{{log}}_{\boldsymbol{{r}}} \mathrm{8}\:=\mathrm{5} \\ $$$$\boldsymbol{{r}}+\boldsymbol{{p}}=\mathrm{11}.\:\:\boldsymbol{{find}}\:\boldsymbol{{r\&p}} \\ $$ Answered by Frix last updated on 04/Nov/23 $$\mathrm{Obviously}\:{p}=\mathrm{9}\wedge{r}=\mathrm{2} \\…
Question Number 199459 by cortano12 last updated on 04/Nov/23 $$\:\:\mathrm{What}\:\mathrm{minimum}\:\mathrm{value}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} \:\mathrm{when}\: \\ $$$$\:\:\mathrm{x}+\mathrm{2y}+\mathrm{4z}=\mathrm{21} \\ $$ Answered by Frix last updated on…