Question Number 199162 by ajfour last updated on 28/Oct/23 $${x}=−\mathrm{2}\sqrt{\mathrm{3}}\int{y}^{\mathrm{3}} \sqrt{\mathrm{1}+\frac{\mathrm{1}}{{y}}}\:{dy} \\ $$$${Find}\:\:\int{x}\left({y}\right){dy}\:\:\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199157 by MathedUp last updated on 30/Oct/23 $$\mathrm{i}'\mathrm{m}\:\mathrm{Calculated}\:\:\mathrm{gauess}\:\mathrm{law}\:\mathrm{in}\:\mathrm{Gravity}\:\mathrm{Field} \\ $$$$ \\ $$$$\int\int_{\:\boldsymbol{{S}}} \:\hat {\boldsymbol{\mathrm{g}}}\centerdot\mathrm{d}\hat {\boldsymbol{\mathrm{S}}} \\ $$$$\hat {\boldsymbol{\mathrm{g}}}\left({x},{y},{z}\right)=−\frac{{Gmx}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −\frac{{Gmy}}{\:\sqrt{{x}^{\mathrm{2}}…
Question Number 199093 by Calculusboy last updated on 28/Oct/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 199159 by cortano12 last updated on 28/Oct/23 $$\:\sqrt[{\mathrm{4}}]{\mathrm{8}\left(\mathrm{x}+\mathrm{1}\right)}\:+\sqrt[{\mathrm{4}}]{\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}}\:=\sqrt[{\mathrm{4}}]{\mathrm{5}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{3}}\: \\ $$$$\:\mathrm{x}=? \\ $$ Answered by Frix last updated on 28/Oct/23 $$\mathrm{You}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\…
Question Number 199122 by MathedUp last updated on 28/Oct/23 $$\mathrm{Evaluate}.\int\int_{\:\boldsymbol{\mathcal{S}}} \:\hat {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\hat {\boldsymbol{\mathrm{S}}} \\ $$$$\mathrm{Where}\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} −\mathrm{3}{y}+\mathrm{2}\:\:, \\ $$$$\hat {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=\mathrm{3}{x}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +\mathrm{2}{z}\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\hat {\boldsymbol{\mathrm{e}}}_{\mathrm{3}}…
Question Number 199155 by cortano12 last updated on 28/Oct/23 $$\:\underbrace{ } \\ $$ Commented by mr W last updated on 31/Oct/23 $${see}\:{Q}\mathrm{199270} \\ $$ Terms…
Question Number 199149 by ajfour last updated on 28/Oct/23 Commented by ajfour last updated on 28/Oct/23 $${No};\:\:{rather}\:{a}=\mathrm{1}<{b}.\:\:{Find}\:{R}={f}\left({b}\right). \\ $$ Answered by ajfour last updated on…
Question Number 199112 by hardmath last updated on 28/Oct/23 $$\begin{cases}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}\:=\:\mathrm{73}}\\{\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{a}\:=\:\mathrm{73}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\mathrm{a},\mathrm{b}\:=\:? \\ $$ Answered by mr W last updated on 28/Oct/23 $$\left({i}\right)−\left({ii}\right): \\ $$$${a}^{\mathrm{2}}…
Question Number 199109 by mnjuly1970 last updated on 28/Oct/23 $$ \\ $$$$\:{Q}:\:\:\:\:\alpha\:,\:\beta\:,\gamma\:{are}\:{the}\:{roots}\:{of}\:{the}\:{following} \\ $$$$\:\:\:\:\:{equation}\:.\:{find}\:{the}\:{value}\:{of}: \\ $$$$ \\ $$$$\:\:\:\:\:{Eq}^{\:{n}} \::\:\:\:{x}^{\:\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:{E}\:=\:\frac{\alpha}{\beta\:+\gamma}\:+\frac{\beta}{\alpha\:+\gamma}\:+\frac{\gamma}{\alpha+\:\beta} \\ $$$$…
Question Number 199170 by tri26112004 last updated on 28/Oct/23 $${n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} +{n}+\mathrm{7}\:=\:{a}^{\mathrm{2}} \:\left({a}\in{N}\right) \\ $$$$\rightarrow{n}=¿\:\left({n}\in{N}\right) \\ $$ Commented by Rasheed.Sindhi last updated on 31/Oct/23…