Menu Close

Author: Tinku Tara

if-the-roots-of-the-equation-x-2-k-1-x-k-0-are-and-find-the-value-of-the-real-constant-k-for-which-2-

Question Number 210574 by ChantalYah last updated on 13/Aug/24 $${if}\:{the}\:{roots}\:{of}\:{the}\:{equation}\: \\ $$$${x}^{\mathrm{2}} +\left({k}+\mathrm{1}\right){x}+{k}=\mathrm{0} \\ $$$${are}\:\alpha\:{and}\:\beta, \\ $$$$\:{find}\:{the}\:{value}\:{of}\:{the} \\ $$$$\:{real}\:{constant}\:{k}\:{for} \\ $$$${which}\:\alpha=\mathrm{2}\beta \\ $$ Answered by…

Question-210607

Question Number 210607 by peter frank last updated on 13/Aug/24 Answered by A5T last updated on 14/Aug/24 $$\mathrm{75}\left(\mathrm{5}^{\mathrm{3}{log}_{\mathrm{2}} {x}} \right)=\mathrm{75}\left(\mathrm{2}^{{log}_{\mathrm{2}} \mathrm{5}} \right)^{{log}_{\mathrm{2}} {x}×\mathrm{3}} =\mathrm{75}\left(\mathrm{2}^{{log}_{\mathrm{2}} {x}}…

sin-x-cos-x-cos-2x-1-3-cos-2x-dx-dx-sec-x-sin-x-1-2-cos-x-cosec-5-x-1-3-

Question Number 210593 by efronzo1 last updated on 13/Aug/24 $$\:\:\int\:\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{2x}}\:+\:\sqrt{\mathrm{cos}\:\mathrm{2x}}}\:\mathrm{dx}\:=? \\ $$$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{sec}\:\mathrm{x}\:\sqrt[{\mathrm{2}}]{\mathrm{sin}\:\mathrm{x}}\:+\:\mathrm{cos}\:\mathrm{x}\:\sqrt[{\mathrm{3}}]{\mathrm{cosec}\:^{\mathrm{5}} \mathrm{x}}}\:=? \\ $$ Answered by Sutrisno last updated on 30/Aug/24 $${misal} \\ $$$${cos}\mathrm{2}{x}={y}^{\mathrm{6}}…

Question-210554

Question Number 210554 by Batmath last updated on 12/Aug/24 Answered by MrGaster last updated on 02/Nov/24 $$\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\mathrm{2}}−{S}\left({px}\right)\right]{x}^{\mathrm{2}{q}−\mathrm{1}} {dx}=\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\left({tpx}\right)}{{t}}{dt}\right]{x}^{\mathrm{2}{q}−\mathrm{1}} {dx}…

let-a-sequence-be-difined-as-a-n-a-n-1-2cos-a-n-1-2-2sin-a-n-1-2-1-a-0-0-find-lim-n-a-n-

Question Number 210549 by universe last updated on 12/Aug/24 $$\mathrm{let}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{be}\:\mathrm{difined}\:\mathrm{as} \\ $$$$\:\mathrm{a}_{\mathrm{n}} =\:\mathrm{a}_{\mathrm{n}−\mathrm{1}} \:+\:\frac{\mathrm{2cos}\:\left(\frac{\mathrm{a}_{\mathrm{n}−\mathrm{1}} }{\mathrm{2}}\right)}{\mathrm{2sin}\:\left(\frac{\mathrm{a}_{\mathrm{n}−\mathrm{1}} }{\mathrm{2}}\right)−\mathrm{1}}\:\:,\:\mathrm{a}_{\mathrm{0}\:} =\:\mathrm{0} \\ $$$$\mathrm{find}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\mathrm{n}\:} \:=\:? \\ $$ Answered by…

Question-210572

Question Number 210572 by Spillover last updated on 12/Aug/24 Answered by mathmax last updated on 13/Aug/24 $${I}=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:\:{changement}\:{x}={t}^{\frac{\mathrm{1}}{\mathrm{4}}} {give} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\infty}…

Question-210573

Question Number 210573 by Spillover last updated on 12/Aug/24 Answered by mathmax last updated on 13/Aug/24 $$\mathrm{2}{I}=\int_{−\infty} ^{+\infty} \frac{{dx}}{{x}^{\mathrm{4}} +{ix}^{\mathrm{2}} +\mathrm{2}}\:\left({fonction}\:{paire}\right) \\ $$$${roots}\:\:\:\:\:\:{x}^{\mathrm{2}} ={t}\rightarrow{t}^{\mathrm{2}} +{it}+\mathrm{2}…