Menu Close

Author: Tinku Tara

Find-the-value-of-m-given-that-the-roots-of-x-4-15x-3-70x-2-120x-m-0-form-a-geometric-progression-

Question Number 198932 by necx122 last updated on 25/Oct/23 $${Find}\:{the}\:{value}\:{of}\:{m}\:{given}\:{that}\:{the} \\ $$$${roots}\:{of}\:{x}^{\mathrm{4}} −\mathrm{15}{x}^{\mathrm{3}} +\mathrm{70}{x}^{\mathrm{2}} −\mathrm{120}{x}+{m}=\mathrm{0} \\ $$$${form}\:{a}\:{geometric}\:{progression}. \\ $$ Answered by AST last updated on…

Question-198933

Question Number 198933 by cherokeesay last updated on 25/Oct/23 Commented by mr W last updated on 26/Oct/23 Commented by Rasheed.Sindhi last updated on 26/Oct/23 $$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{diagram}}\:\boldsymbol{\mathrm{sir}}!…

Question-198869

Question Number 198869 by Tawa11 last updated on 25/Oct/23 Commented by mr W last updated on 25/Oct/23 $$\mathrm{26}.\mathrm{8}\:\mathrm{cos}\:\mathrm{10}°\neq\mathrm{28}.\mathrm{2}\:\mathrm{cos}\:\mathrm{20}° \\ $$$$\Rightarrow{something}\:{in}\:{question}\:{is}\:{wrong}! \\ $$ Commented by Tawa11…

Find-the-value-of-t-t-1-3-2-9-3-27-n-3-n-

Question Number 198931 by necx122 last updated on 25/Oct/23 $${Find}\:{the}\:{value}\:{of}\:{t}:\: \\ $$$${t}\:=\:\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{9}}+\frac{\mathrm{3}}{\mathrm{27}}+…….+\frac{{n}}{\mathrm{3}^{{n}} }+….. \\ $$ Answered by cortano12 last updated on 26/Oct/23 $$\:\mathrm{t}=\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{2}}{\mathrm{9}}\:+\frac{\mathrm{3}}{\mathrm{27}}\:+\ldots+\:\frac{\mathrm{n}}{\mathrm{3}^{\mathrm{n}} }\: \\…

Question-198860

Question Number 198860 by cherokeesay last updated on 25/Oct/23 Answered by mr W last updated on 25/Oct/23 $$\left.{D}\right)\:{is}\:{correct}. \\ $$$${the}\:{force}\:{moved}\:{the}\:{block}\:{to}\:{a}\:{height} \\ $$$${a}\:\mathrm{sin}\:\theta,\:{the}\:{work}\:{done}\:{is}\:{wa}\:\mathrm{sin}\:\theta. \\ $$$${the}\:{force}\:{pulled}\:{the}\:{spring}\:{to}\:{a}\:{length} \\…

Question-198862

Question Number 198862 by sonukgindia last updated on 25/Oct/23 Answered by Frix last updated on 25/Oct/23 $$\begin{vmatrix}{{a}}&{{b}}&{{c}}\\{{b}}&{{c}}&{{a}}\\{{c}}&{{a}}&{{b}}\end{vmatrix}=\mathrm{3}{abc}−\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \right)= \\ $$$$=\left({a}+{b}+{c}\right)\left({ab}+{ac}+{bc}−\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\right)=…

prove-lim-n-n-n-x-n-x-1-

Question Number 198855 by mokys last updated on 25/Oct/23 $${prove}\::\:\underset{{n}\rightarrow\infty} {{lim}}\:\frac{{n}!}{{n}^{{x}} \left({n}−{x}\right)!}\:=\:\mathrm{1}\: \\ $$ Answered by witcher3 last updated on 25/Oct/23 $$\frac{\Gamma\left(\mathrm{n}+\mathrm{1}\right)}{\Gamma\left(\mathrm{n}+\mathrm{1}−\mathrm{x}\right)\mathrm{n}^{\mathrm{x}} } \\ $$$$\Gamma\left(\mathrm{z}\right)=\sqrt{\mathrm{2}\pi}.\mathrm{z}^{\mathrm{z}−\frac{\mathrm{1}}{\mathrm{2}}}…