Menu Close

Author: Tinku Tara

Find-3-3-4-3-3-5-3-1-2-3-3-7-3-1-6-27-5-

Question Number 213589 by hardmath last updated on 09/Nov/24 $$\mathrm{Find}: \\ $$$$\frac{\left(\mathrm{3}\:-\:\frac{\mathrm{3}}{\mathrm{4}}\right)\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{3}}{\mathrm{5}}\right)\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{1}}{\mathrm{2}}\right)\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{3}}{\mathrm{7}}\right)\centerdot…\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{1}}{\mathrm{6}}\right)}{\mathrm{27}^{\mathrm{5}} }\:=\:? \\ $$ Answered by issac last updated on 09/Nov/24 $$\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{15}} \underset{{h}=\mathrm{1}} {\overset{\mathrm{15}}…

0-lt-c-lt-1-such-that-the-recursive-sequence-a-n-defined-by-setting-a-1-c-2-a-n-1-1-2-c-a-n-2-for-n-N-monotonic-and-convergent-

Question Number 213548 by universe last updated on 08/Nov/24 $$\mathrm{0}<{c}<\mathrm{1}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{recursive}\:\mathrm{sequence} \\ $$$$\left\{{a}_{{n}} \right\}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{setting}\: \\ $$$$\:\mathrm{a}_{\mathrm{1}\:} =\:\frac{\mathrm{c}}{\mathrm{2}}\:\:,\:{a}_{\mathrm{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{c}+\mathrm{a}_{\mathrm{n}} ^{\mathrm{2}} \right)\:\:\mathrm{for}\:\mathrm{n}\in\:\mathbb{N} \\ $$$$\mathrm{monotonic}\:\mathrm{and}\:\mathrm{convergent} \\ $$ Answered by…

f-z-j-z-z-2-j-2-z-0-lim-z-f-z-

Question Number 213555 by issac last updated on 08/Nov/24 $${f}\left({z}\right)=\underset{{j}=−\infty} {\overset{\infty} {\sum}}\:\frac{{z}}{{z}^{\mathrm{2}} +{j}^{\mathrm{2}} }\:,\:{z}\in\left(\mathrm{0},\infty\right) \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({z}\right)=?? \\ $$ Answered by lepuissantcedricjunior last updated on…