Menu Close

Author: Tinku Tara

Prove-that-2t-1-lnt-ln-1-t-1-0-t-x-1-t-1-x-dx-and-1-0-2t-1-lnt-ln-1-t-dt-pi-2-1-0-x-1-x-sin-pix-dx-

Question Number 198156 by Erico last updated on 12/Oct/23 $$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{lnt}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)}=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \mathrm{t}^{\mathrm{x}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{1}−\mathrm{x}} \mathrm{dx} \\ $$$$\mathrm{and}\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\mathrm{2t}−\mathrm{1}}{\mathrm{lnt}−\mathrm{ln}\left(\mathrm{1}−\mathrm{t}\right)}\mathrm{dt}\:\:=\:\:\frac{\pi}{\mathrm{2}}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{sin}\left(\pi\mathrm{x}\right)}\mathrm{dx} \\ $$ Answered…

Prove-The-following-Functional-equation-x-s-2-1-s-2pi-1-s-sin-pis-2-m-1-cos-2pimx-m-1-s-cos-pis-2-m-1-sin-2pimx-m-1-s-

Question Number 198175 by York12 last updated on 12/Oct/23 $${Prove}\:{The}\:{following}\:{Functional}\:{equation}: \\ $$$$\zeta\left({x},{s}\right)=\frac{\mathrm{2}\Gamma\left(\mathrm{1}−{s}\right)}{\left(\mathrm{2}\pi\right)^{\left(\mathrm{1}−{s}\right)} }\left\{{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{cos}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]+{cos}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{sin}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]\right\} \\ $$ Answered by witcher3 last…

Question-198176

Question Number 198176 by Blackpanther last updated on 12/Oct/23 Answered by som(math1967) last updated on 13/Oct/23 $${let}\:{side}\:{of}\:\blacksquare{PQRB}={x}\:{unit} \\ $$$${side}\:{of}\:\blacksquare\:{EFGH}\:={y}\:{unit} \\ $$$$\:{AB}={AP}+{PB} \\ $$$$\:\:\:\:\:={xtan}\mathrm{30}\:+{x}\:\left[\:\because\:\frac{{AP}}{{x}}={tan}\mathrm{30}\right] \\ $$$$\:{again}\:{AB}={AH}+{HB}…

Question-198161

Question Number 198161 by Blackpanther last updated on 12/Oct/23 Answered by Rasheed.Sindhi last updated on 12/Oct/23 $$\blacktriangle\mathrm{ABC}=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{AC}.\mathrm{BC} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{12}×{y}=\mathrm{6}{y} \\ $$$$\:\:\:\:\:\:\:\mathrm{48}\leqslant\mathrm{6}{y}\leqslant\mathrm{60} \\ $$$$\:\:\:\:\:\:\:\mathrm{8}\leqslant{y}\leqslant\mathrm{10} \\ $$$$\because\:{y}\in\mathbb{Z}…

1-0-x-1-x-sin-pix-dx-

Question Number 198141 by Erico last updated on 11/Oct/23 $$\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \:\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{sin}\left(\pi\mathrm{x}\right)}\mathrm{dx}=??? \\ $$ Answered by witcher3 last updated on 11/Oct/23 $$\frac{\mathrm{1}}{\mathrm{sin}\left(\pi\mathrm{x}\right)}=\frac{\mathrm{2ie}^{−\mathrm{i}\pi\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{2i}\pi\mathrm{x}} }\: \\…

Question-198136

Question Number 198136 by sonukgindia last updated on 11/Oct/23 Answered by Frix last updated on 11/Oct/23 $$\frac{\mathrm{3}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{16}}{{x}^{\mathrm{5}} +\mathrm{2}{x}^{\mathrm{4}} +\mathrm{16}{x}+\mathrm{32}}=\frac{\left({x}+\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{\left({x}+\mathrm{2}\right)\left({x}^{\mathrm{4}} +\mathrm{16}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{2}\right)}−\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){x}+\mathrm{2}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)}{\mathrm{8}\left({x}^{\mathrm{2}}…