Menu Close

Author: Tinku Tara

Find-the-directional-derivative-of-f-x-y-4x-3-3x-2-y-2-in-the-direction-given-by-the-angle-pi-3-and-also-Evaluate-directional-derivatives-at-the-point-1-2-

Question Number 210078 by Spillover last updated on 29/Jul/24 $${Find}\:{the}\:{directional}\:{derivative}\:{of} \\ $$$${f}\left({x},{y}\right)=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \:\:\:{in}\:{the}\:{direction}\:{given} \\ $$$${by}\:{the}\:{angle}\:\theta=\frac{\pi}{\mathrm{3}}\: \\ $$$${and}\:{also}\:{Evaluate}\:{directional}\:{derivatives} \\ $$$${at}\:{the}\:{point}\:\left(\mathrm{1},\mathrm{2}\right) \\ $$ Answered by…

Find-directional-derivatives-D-v-of-f-x-y-z-3xy-3-2xz-2-in-the-direction-of-the-v-2i-3j-6k-then-Evaluate-directional-derivatives-at-the-point-3-1-2-

Question Number 210079 by Spillover last updated on 30/Jul/24 $${Find}\:{directional}\:{derivatives}\left({D}_{{v}} \right){of}\:\: \\ $$$${f}\left({x},{y},{z}\right)=\mathrm{3}{xy}^{\mathrm{3}} −\mathrm{2}{xz}^{\mathrm{2}} \:\:{in}\:{the}\:{direction}\:{of}\:{the} \\ $$$${v}=\mathrm{2}{i}−\mathrm{3}{j}+\mathrm{6}{k}. \\ $$$${then}\:{Evaluate}\:{directional}\:{derivatives}\: \\ $$$${at}\:{the}\:{point}\:\left(\mathrm{3},\mathrm{1},−\mathrm{2}\right) \\ $$ Terms of…

Question-210072

Question Number 210072 by peter frank last updated on 29/Jul/24 Answered by Frix last updated on 29/Jul/24 $$\mathrm{The}\:\mathrm{incircle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{rectangular}\:\mathrm{triangle}\:\mathrm{with} \\ $$$$\mathrm{sides}\:{a},\:{b},\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\mathrm{is}\:\frac{{a}+{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{2}}\:\:\:\:\:\left(\ast\right) \\…

Question-210036

Question Number 210036 by peter frank last updated on 29/Jul/24 Answered by Prithwish last updated on 29/Jul/24 $${ab}=\left(\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{cos}\:\theta}\right)\left(\frac{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:\theta}\right) \\ $$$${ab}=\mathrm{sin}\:\theta\mathrm{cos}\:\theta \\ $$$${a}^{\mathrm{2}} +\overset{\mathrm{2}}…

6-0-2-5x-e-1-3-x-dx-

Question Number 210032 by klipto last updated on 29/Jul/24 $$\int_{\mathrm{6}} ^{\mathrm{0}} \left(\mathrm{2}+\mathrm{5}\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{e}}^{\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{dx}} \\ $$ Answered by Sutrisno last updated on 29/Jul/24 $$=\int_{\mathrm{6}} ^{\mathrm{0}} \mathrm{2}{e}^{\frac{\mathrm{1}}{\mathrm{3}}{x}}…

0-pi-2-1-xcot-x-x-2-dx-

Question Number 210031 by MrGHK last updated on 29/Jul/24 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}−\boldsymbol{\mathrm{xcot}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-210057

Question Number 210057 by professorleiciano last updated on 29/Jul/24 Commented by mr W last updated on 30/Jul/24 $${why}\:{did}\:{you}\:{post}\:{the}\:{same}\: \\ $$$${question}\:{again}\:{without}\:{giving}\:{a} \\ $$$${comment}\:{to}\:{my}\:{answer}\:{to}\:{the} \\ $$$${same}\:{question}\:{which}\:{you}\:{have} \\…