Menu Close

Author: Tinku Tara

Question-225098

Question Number 225098 by Ark55 last updated on 17/Oct/25 Answered by Rasheed.Sindhi last updated on 17/Oct/25 $$\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6} \\ $$$$\left(\mathrm{5}{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6}\right)^{\mathrm{2}} \\ $$$$\mathrm{25}{x}^{\mathrm{2}} +\mathrm{10}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{36} \\ $$$$\mathrm{25}{x}^{\mathrm{2}}…

Question-225075

Question Number 225075 by Ark55 last updated on 17/Oct/25 Answered by Frix last updated on 17/Oct/25 $$\mathrm{Obviously}\:{x}=\mathrm{1} \\ $$$$\:\:\:\:\:\mathrm{because}\:\mathrm{5}+\mathrm{1}=\mathrm{6}\:\mathrm{and}\:\mathrm{25}+\mathrm{1}=\mathrm{26} \\ $$$$\mathrm{or}\:{x}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\mathrm{because}\:\mathrm{1}+\mathrm{5}=\mathrm{6}\:\mathrm{and}\:\mathrm{1}+\mathrm{25}=\mathrm{26} \\ $$…

Calculate-D-n-determinant-x-1-a-1-2-a-1-a-2-a-1-a-n-a-2-a-1-x-2-a-2-2-a-2-a-n-a-n-a-1-a-n-a-2-x-n-a-n-2-

Question Number 224989 by CrispyXYZ last updated on 15/Oct/25 $$\mathrm{Calculate} \\ $$$${D}_{{n}} =\begin{vmatrix}{{x}_{\mathrm{1}} +{a}_{\mathrm{1}} ^{\mathrm{2}} }&{{a}_{\mathrm{1}} {a}_{\mathrm{2}} }&{\ldots}&{{a}_{\mathrm{1}} {a}_{{n}} }\\{{a}_{\mathrm{2}} {a}_{\mathrm{1}} }&{{x}_{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} }&{\ldots}&{{a}_{\mathrm{2}}…

The-new-symbols-are-in-progress-New-update-will-be-release-by-end-of-this-month-with-Close-integration-symbols-Italic-greek-capital-letters-Ability-to-upload-GIF-images-If-anyone-has-any-other

Question Number 225003 by Tinku Tara last updated on 15/Oct/25 $$\mathrm{The}\:\mathrm{new}\:\mathrm{symbols}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{progress}.\:\mathrm{New}\:\mathrm{update}\:\mathrm{will}\:\mathrm{be}\:\mathrm{release} \\ $$$$\mathrm{by}\:\mathrm{end}\:\mathrm{of}\:\mathrm{this}\:\mathrm{month}\:\mathrm{with} \\ $$$$-\:\mathrm{Close}\:\mathrm{integration}\:\mathrm{symbols} \\ $$$$-\:\mathrm{Italic}\:\mathrm{greek}\:\mathrm{capital}\:\mathrm{letters} \\ $$$$-\:\mathrm{Ability}\:\mathrm{to}\:\mathrm{upload}\:\mathrm{GIF}\:\mathrm{images} \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{anyone}\:\mathrm{has}\:\mathrm{any}\:\mathrm{other}\:\mathrm{improvement}…