Menu Close

Author: Tinku Tara

find-minimum-value-of-m-such-that-m-19-1800-mod-2029-

Question Number 197752 by cortano12 last updated on 27/Sep/23 $$\:\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{m} \\ $$$$\:\mathrm{such}\:\mathrm{that}\:\mathrm{m}^{\mathrm{19}} =\:\mathrm{1800}\:\left(\mathrm{mod}\:\mathrm{2029}\right) \\ $$ Answered by AST last updated on 27/Sep/23 $${m}^{\mathrm{2028}} =\left({m}^{\mathrm{19}} \right)^{\mathrm{107}}…

A-62-C-43-Determiner-a-B-c-D-b-F-

Question Number 197717 by a.lgnaoui last updated on 27/Sep/23 $$\measuredangle\boldsymbol{\mathrm{A}}=\mathrm{62}\:\:\:\measuredangle\boldsymbol{\mathrm{C}}=\mathrm{43} \\ $$$$\boldsymbol{\mathrm{Determiner}}:\:\:\mathrm{a}=\measuredangle\boldsymbol{\mathrm{B}}\:\:\:\:\mathrm{c}=\measuredangle\boldsymbol{\mathrm{D}}\:\:\:\:\:\mathrm{b}=\measuredangle\boldsymbol{\mathrm{F}} \\ $$ Commented by a.lgnaoui last updated on 27/Sep/23 $$\measuredangle{EDF}=\mathrm{62}\:? \\ $$ Commented…

2-0-1-tan-1-x-dx-

Question Number 197744 by mathlove last updated on 27/Sep/23 $$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{−\mathrm{1}} {x}\:{dx}=? \\ $$ Answered by witcher3 last updated on 27/Sep/23 $$\int\mathrm{2tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{dx}=\mathrm{2xtan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\int\frac{\mathrm{2x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}}…