Menu Close

Author: Tinku Tara

Question-213744

Question Number 213744 by efronzo1 last updated on 15/Nov/24 Answered by golsendro last updated on 15/Nov/24 $$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{4x}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} +\left(\mathrm{1}−\mathrm{4x}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} −\mathrm{2}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3}\left(\mathrm{1}+\mathrm{4x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} −\mathrm{3}\left(\mathrm{1}−\mathrm{4x}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}}…

Question-213745

Question Number 213745 by efronzo1 last updated on 15/Nov/24 Answered by mnjuly1970 last updated on 16/Nov/24 $$\:\left(\mathrm{M}{edian}\:{theorem}\:\right):\:\:\:\:\:\:\mathrm{7}^{\mathrm{2}} \:+\:{R}^{\mathrm{2}} =\:\mathrm{2}\left(\sqrt{\mathrm{14}}\:\right)^{\mathrm{2}} \:+\:\frac{\left(\mathrm{2}{R}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{49}\:+\:{R}^{\mathrm{2}} \:=\:\mathrm{28}\:+\:\mathrm{2}{R}^{\mathrm{2}} \\…

please-prove-1-x-x-1-

Question Number 213725 by zakirullah last updated on 14/Nov/24 $${please}\:{prove}\:\frac{\mathrm{1}}{{x}}\:=\:{x}^{−\mathrm{1}} \\ $$ Answered by Rasheed.Sindhi last updated on 14/Nov/24 $$\:\:\:\:\:\frac{\mathrm{1}}{{x}}=\frac{{x}^{\mathrm{0}} }{{x}^{\mathrm{1}} }={x}^{\mathrm{0}−\mathrm{1}} ={x}^{−\mathrm{1}} \\ $$…

ax-by-cz-36-1-x-1-y-1-z-1-9-a-b-c-

Question Number 213726 by hardmath last updated on 14/Nov/24 $$\mathrm{ax}\:=\:\mathrm{by}\:=\:\mathrm{cz}\:=\:\mathrm{36} \\ $$$$\frac{\mathrm{1}}{\mathrm{x}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{y}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{z}}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 14/Nov/24 $${a}=\frac{\mathrm{36}}{{x}},\:{b}=\frac{\mathrm{36}}{{y}},\:{c}=\frac{\mathrm{36}}{{z}} \\…

Resoudre-le-systeme-d-equations-x-y-xy-84-x-2-y-2-25-

Question Number 213721 by a.lgnaoui last updated on 14/Nov/24 $$\boldsymbol{\mathrm{Resoudre}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{systeme}}\:\boldsymbol{\mathrm{d}}'\:\boldsymbol{\mathrm{equations}}: \\ $$$$\begin{cases}{\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{xy}}=\mathrm{84}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:\:\:\:\:=\mathrm{25}}\end{cases} \\ $$ Answered by golsendro last updated on 14/Nov/24 $$\:\:\:\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2xy}=\:\mathrm{x}^{\mathrm{2}}…

Does-Volume-integral-V-pi-0-J-2-z-dz-is-divergence-J-z-is-nu-th-Bessel-function-

Question Number 213713 by issac last updated on 14/Nov/24 $$\mathrm{Does}\:\mathrm{Volume}\:\mathrm{integral}\: \\ $$$${V}=\pi\centerdot\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} ^{\:\mathrm{2}} \left({z}\right)\mathrm{d}{z}\:\mathrm{is}\:\mathrm{divergence}…?? \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{is}\:\nu\left(\mathrm{nu}\right)'\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function} \\ $$ Terms of Service Privacy…