Question Number 227128 by Spillover last updated on 01/Jan/26 Answered by som(math1967) last updated on 01/Jan/26 $$\int_{\mathrm{0}\:\:} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{tanx}}}{\mathrm{1}+\sqrt{{tanx}}}{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{dx}}{\mathrm{1}+\sqrt{{tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}} \\ $$$${I}=\int_{\mathrm{0}}…
Question Number 227113 by MrAjder last updated on 01/Jan/26 $$\int_{\mathrm{0}} ^{\mathrm{1}} \lfloor\mathrm{log}_{\mathrm{2}} \left({x}−\mathrm{2}^{\lfloor\mathrm{log}_{\mathrm{2}} {x}\rfloor} \right)\rfloor{dx} \\ $$ Answered by MrAjder last updated on 01/Jan/26 Terms…
Question Number 227131 by Devil001 last updated on 01/Jan/26 $$\int \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 227115 by MrAjder last updated on 01/Jan/26 $$\mathrm{prove}:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{i}\:\mathrm{sin}\frac{\mathrm{1}}{{i}}>\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)} \\ $$ Answered by MrAjder last updated on 01/Jan/26 $$\forall{i}\in\mathbb{Z}^{+} ,\mathrm{0}<\frac{\mathrm{1}}{{i}}\leq\mathrm{1}\Rightarrow\mathrm{sin}\frac{\mathrm{1}}{{i}}>\frac{\mathrm{1}}{{i}}−\frac{\mathrm{1}}{\mathrm{6}{i}^{\mathrm{3}} }\Rightarrow{i}\:\mathrm{sin}\frac{\mathrm{1}}{{i}}>\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}{i}^{\mathrm{2}} }…
Question Number 227124 by BaliramKumar last updated on 01/Jan/26 $$\sqrt[{\mathrm{3}}]{\mathrm{2025}×\mathrm{2026}×\mathrm{2027}\:+\:\mathrm{2026}}\:=\:?\:\:\:\:\:\:\: \\ $$ Answered by TonyCWX last updated on 01/Jan/26 $$\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{1}\right)\left({x}\right)\left({x}+\mathrm{1}\right)+{x}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −{x}+{x}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}}…
Question Number 227126 by cherokeesay last updated on 01/Jan/26 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 227127 by MrAjder last updated on 01/Jan/26 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{prove}: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{6}} }{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}\sqrt{\mathrm{3}}}−\frac{\mathrm{5}}{\mathrm{9}}\boldsymbol{\mathrm{G}} \\ $$$$ \\ $$ Commented by Tawa11 last updated…
Question Number 227121 by ajfour last updated on 01/Jan/26 $$\:\:\:\:\:\:\:\:\:{I}\:{Cracked}\: \\ $$$$\:\:\:{The}\:{Angle}\:{Trisection}\:{problem} \\ $$$$ \\ $$ Commented by ajfour last updated on 01/Jan/26 https://g.co/gemini/share/b49a5367b503 Commented…
Question Number 227102 by gregori last updated on 31/Dec/25 $$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\frac{{m}}{{n}}\: \\ $$$$ \\ $$ Answered…
Question Number 227098 by gregori last updated on 31/Dec/25 $$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ Answered by mr…