Menu Close

Author: Tinku Tara

1-2-x-1-2-2-x-2-3-2-x-3-100-2-x-100-10100-for-x-non-negative-integers-find-the-possible-value-of-x-

Question Number 213423 by efronzo1 last updated on 05/Nov/24 $$\:\:\lfloor\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}−\mathrm{1}\rfloor\:+\:\lfloor\:\frac{\mathrm{2}}{\mathrm{2}}\mathrm{x}−\mathrm{2}\rfloor+\lfloor\frac{\mathrm{3}}{\mathrm{2}}\mathrm{x}−\mathrm{3}\rfloor+…+\lfloor\frac{\mathrm{100}}{\mathrm{2}}\mathrm{x}−\mathrm{100}\rfloor\:\leqslant\mathrm{10100} \\ $$$$\:\:\mathrm{for}\:\mathrm{x}\:\mathrm{non}\:\mathrm{negative}\:\mathrm{integers}. \\ $$$$\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$ Answered by golsendro last updated on 05/Nov/24 $$\:\:\:\underline{ }…

x-y-z-R-x-y-z-9-4-x-y-z-11-3-x-y-z-10-5-find-x-

Question Number 213430 by hardmath last updated on 05/Nov/24 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{x}\:+\:\left[\mathrm{y}\right]\:+\:\left\{\mathrm{z}\right\}\:=\:\mathrm{9},\mathrm{4}}\\{\left[\mathrm{x}\right]\:+\:\left\{\mathrm{y}\right\}\:+\:\mathrm{z}\:=\:\mathrm{11},\mathrm{3}}\\{\left\{\mathrm{x}\right\}\:+\:\mathrm{y}\:+\:\left[\mathrm{z}\right]\:=\:\mathrm{10},\mathrm{5}}\end{cases}\:\:\:\:\:\mathrm{find}:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$ Answered by A5T last updated on 05/Nov/24 $$\left({i}\right)−\left({ii}\right):\:\left\{{x}\right\}+\left[{y}\right]−\left\{{y}\right\}−\left[{z}\right]=−\mathrm{1}.\mathrm{9}…\left({iv}\right) \\ $$$$\left({iv}\right)−\left({iii}\right)\Rightarrow\left[{y}\right]−\left\{{y}\right\}−{y}−\mathrm{2}\left[{z}\right]=−\mathrm{12}.\mathrm{4} \\…

pls-teach-me-above-question-prove-real-analysis-pls-and-sorry-Mr-gaster-i-cant-believe-you-answer-

Question Number 213404 by issac last updated on 04/Nov/24 $$\mathrm{pls}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{above}\:\mathrm{question} \\ $$$$\downarrow\downarrow\:\left(\mathrm{prove}\:\mathrm{real}\:\mathrm{analysis}\:\mathrm{pls}\right) \\ $$$$\mathrm{and}\:\mathrm{sorry}\:\mathrm{Mr}\:\mathrm{gaster} \\ $$$$\mathrm{i}\:\mathrm{cant}\:\mathrm{believe}\:\mathrm{you}\:\mathrm{answer}…. \\ $$ Commented by MrGaster last updated on 04/Nov/24…

Solve-the-system-of-equations-where-a-b-c-0-a-2bc-b-2ac-c-2ab-a-b-c-2-

Question Number 213391 by York12 last updated on 04/Nov/24 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{where}\:{a},{b},{c}\geqslant\mathrm{0} \\ $$$${a}−\mathrm{2}{bc}={b}−\mathrm{2}{ac}={c}−\mathrm{2}{ab} \\ $$$${a}+{b}+{c}=\mathrm{2}\: \\ $$ Answered by Frix last updated on 04/Nov/24 $$\mathrm{Due}\:\mathrm{to}\:\mathrm{symmetry}\:{a}={b}={c}=\frac{\mathrm{2}}{\mathrm{3}} \\…

a-b-c-d-N-a-b-c-d-63-Find-maksimum-ab-bc-cd-

Question Number 213417 by hardmath last updated on 04/Nov/24 $$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:,\:\mathrm{d}\:\in\:\mathbb{N} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:+\:\mathrm{d}\:=\:\mathrm{63} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{maksimum}\left(\mathrm{ab}\:+\:\mathrm{bc}\:+\:\mathrm{cd}\right)\:=\:? \\ $$ Answered by Frix last updated on 05/Nov/24 $${d}=\mathrm{63}−{a}−{b}−{c} \\…