Menu Close

Author: Tinku Tara

sec-d-

Question Number 224833 by fantastic last updated on 06/Oct/25 $$\int\mathrm{sec}\:\theta\:{d}\theta \\ $$ Answered by taha3738 last updated on 06/Oct/25 $$\int\:\mathrm{sec}\:\theta\:{d}\theta\:=\:\int\:\frac{\mathrm{sec}\:\theta\:\left(\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\right)}{\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta}\:{d}\theta \\ $$$$=\:\int\:\:\frac{\mathrm{sec}^{\mathrm{2}} \theta+\:\mathrm{sec}\:\theta\:\mathrm{tan}\:\theta}{\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\:}\:{d}\theta\:=\:\mathrm{ln}\:\mid\:\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\:\mid\:+\:{C} \\ $$$${Because}\:\frac{{d}}{{d}\theta}\:\left(\:\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\:\right)\:=\:\frac{{d}}{{d}\theta}\:\mathrm{sec}\:\theta\:+\:\frac{{d}}{{d}\theta}\:\mathrm{tan}\:\theta…

Use-the-Gauss-Bonnet-Theorem-to-show-that-the-number-of-holes-in-a-straw-is-1-Then-associate-it-and-show-that-the-Genus-on-the-surface-is-1-

Question Number 224806 by fkwow344 last updated on 05/Oct/25 $$\mathrm{Use}\:\mathrm{the}\:\mathrm{Gauss}\:\mathrm{Bonnet}\:\mathrm{Theorem}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{holes}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straw}\:\mathrm{is}\:\mathrm{1}. \\ $$$$\mathrm{Then}\:\mathrm{associate}\:\mathrm{it}\:\mathrm{and}\: \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{Genus}\:\mathrm{on}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{is}\:\mathrm{1}. \\ $$ Answered by MrAjder last updated on 18/Oct/25…

Question-224807

Question Number 224807 by fantastic last updated on 05/Oct/25 Commented by fantastic last updated on 05/Oct/25 $${It}\:{took}\:{me}\:\mathrm{10}\:{to}\:\mathrm{15}\:{minutes}\:{to}\:{solve} \\ $$$${this}\:{question}.{It}\:{was}\:{not}\:{too}\:{hard} \\ $$$${but}\:{the}\:{question}\:{is}\:{very}\:{interesting} \\ $$$${Here}\:{is}\:{the}\:{question}: \\ $$$${A}\:{bottle}\:{of}\:{syllendrical}\:{shape}…

prove-Sphere-S-R-3-R-x-2-y-2-z-2-R-2-Euler-characteristic-2-by-gauss-Bonnet-theorem-2pi-dA-K-Gauss-curvature-defined-as-K-det-det-I-LN-M-2-EG-F-2-such-that-I-

Question Number 224789 by fkwow344 last updated on 04/Oct/25 $$\mathrm{prove}\:\mathrm{Sphere}\:\mathcal{S};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={R}^{\mathrm{2}} \:,\:\mathrm{Euler}\:\mathrm{characteristic}\:\boldsymbol{\chi}=\mathrm{2} \\ $$$$\mathrm{by}\:\mathrm{gauss}-\mathrm{Bonnet}\:\mathrm{theorem} \\ $$$$\mathrm{2}\pi\boldsymbol{\chi}\left(\boldsymbol{\Omega}\right)=\int_{\:\boldsymbol{\Omega}} \:\mathrm{d}{A}\:{K} \\ $$$$\mathrm{Gauss}\:\mathrm{curvature}\:\mathrm{defined}\:\mathrm{as}\:{K}=\frac{\mathrm{det}\:\Pi}{\mathrm{det}\:\mathrm{I}}=\frac{{LN}−{M}^{\mathrm{2}} }{{EG}−{F}^{\mathrm{2}}…