Question Number 72394 by mathmax by abdo last updated on 28/Oct/19 $${let}\:{g}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{3}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:{g}^{\left({n}\right)} \left({x}\right){and}\:{g}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{g}\:{at}\:{integr}\:{serie} \\ $$ Commented by mathmax by…
Question Number 72395 by mathmax by abdo last updated on 28/Oct/19 $${find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({C}_{{n}} ^{{k}} \right)^{\mathrm{3}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72392 by mathmax by abdo last updated on 28/Oct/19 $${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} {ln}\left(\mathrm{1}+{x}\right){dx}\:\:{with}\:{n}\:{natural}\:\geqslant\mathrm{1} \\ $$ Commented by mathmax by abdo last updated…
Question Number 137930 by mnjuly1970 last updated on 08/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:…\:…\:{calculus}….. \\ $$$$\:\:\:\:\:{calculation}\:{of}::: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{2}} ^{\:\mathrm{6}} \:\frac{\mathrm{1}+\left(\sqrt[{\mathrm{3}}]{\left({x}−\mathrm{2}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{6}\right)}\:\right){cos}^{\mathrm{2021}} \left(\pi{x}\right)}{{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{20}}{dx}=? \\ $$$$\:\:\:\:\:{solution}:: \\ $$$$\:\:\:\:\:{x}−\mathrm{4}={t}\:\Rightarrow\left\{_{\:{x}=\mathrm{6}\:\Rightarrow\:{t}=\mathrm{2}} ^{{x}=\mathrm{2}\:\Rightarrow{t}=−\mathrm{2}} \right. \\…
Question Number 72393 by mathmax by abdo last updated on 28/Oct/19 $${let}\:{f}\left({x}\right)\:={cos}\left({narccosx}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy…
Question Number 6856 by Tawakalitu. last updated on 31/Jul/16 $${Prove}\:{that}\:{the}\:{set}\:{of}\:{all}\:{m}\:×\:{n}\:{matrices}\:{having}\:{entries}\:{in}\:{a} \\ $$$${field}\:{is}\:{a}\:{vector}\:{space}\:{over}\:{F}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137925 by brayan last updated on 08/Apr/21 $$\phi \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72390 by mathmax by abdo last updated on 28/Oct/19 $${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{\left({x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$$${and}\:{determine}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \\ $$ Commented by…
Question Number 72391 by mathmax by abdo last updated on 28/Oct/19 $${calculte}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 137926 by brayan last updated on 08/Apr/21 $$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {x}^{\mathrm{2}} \mathrm{cos}\:{xdx}= \\ $$ Answered by Ñï= last updated on 08/Apr/21 $$\frac{\mathrm{1}}{{D}}{x}^{\mathrm{2}} \mathrm{cos}\:{x}={Re}\left({e}^{{ix}} \frac{\mathrm{1}}{{D}+{i}}{x}^{\mathrm{2}}…