Menu Close

Author: Tinku Tara

Obain-an-equation-for-the-left-Reimen-Sum-the-right-Reimen-sum-Trapeziodal-rule-Newton-Raphson-s-Iteration-Hence-find-and-approximate-value-for-0-3-e-x-x-2-dx-

Question Number 72336 by Rio Michael last updated on 27/Oct/19 $${Obain}\:{an}\:{equation}\:{for}\: \\ $$$$\Rightarrow\:{the}\:{left}\:{Reimen}\:{Sum} \\ $$$$\Rightarrow\:{the}\:{right}\:{Reimen}\:{sum} \\ $$$$\Rightarrow\:{Trapeziodal}\:{rule} \\ $$$$\Rightarrow\:{Newton}\:{Raphson}'{s}\:{Iteration} \\ $$$$\:\:{Hence}\:{find}\:{and}\:{approximate}\:{value}\:{for}\:\int_{\mathrm{0}} ^{\mathrm{3}} \left({e}^{{x}} \:+\:{x}^{\mathrm{2}} \right){dx}…

Evaluate-5-5-25-x-2-dx-using-an-algebraic-method-Geometrical-mehod-thanks-in-advanced-great-mathematicians-

Question Number 72337 by Rio Michael last updated on 27/Oct/19 $${Evaluate}\:\:\int_{−\mathrm{5}} ^{\mathrm{5}} \left(\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }\:\right)\:{dx}\:{using} \\ $$$$\Rightarrow\:{an}\:{algebraic}\:{method} \\ $$$$\Rightarrow\:{Geometrical}\:{mehod}\: \\ $$$${thanks}\:{in}\:{advanced}\:{great}\:{mathematicians} \\ $$ Commented by mathmax…

What-is-the-probability-that-3-customers-waiting-in-bank-will-be-served-in-sequence-of-their-arrival-

Question Number 6799 by Tawakalitu. last updated on 27/Jul/16 $${What}\:{is}\:{the}\:{probability}\:{that}\:\mathrm{3}\:{customers}\:{waiting}\:{in}\:{bank}\:{will}\: \\ $$$${be}\:{served}\:{in}\:{sequence}\:{of}\:{their}\:{arrival}. \\ $$ Commented by Yozzii last updated on 27/Jul/16 $${sequence}\:{of}\:{arrival}\:{is}\:{one}\:{out}\:{of}\:\mathrm{3}!=\mathrm{6}. \\ $$$$\Rightarrow\:{experimental}\:{probability}=\frac{\mathrm{1}}{\mathrm{6}}. \\…

Find-the-area-bounded-by-the-standard-normal-distribution-p-1-96-Z-2-5-

Question Number 137871 by pete last updated on 07/Apr/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{standard} \\ $$$$\mathrm{normal}\:\mathrm{distribution}\:\mathrm{p}\left(−\mathrm{1}.\mathrm{96}\leqslant\mathrm{Z}\leqslant\mathrm{2}.\mathrm{5}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

let-Q-1-tan-3pi-8-tan-pi-10-1-tan-pi-8-tan-pi-10-prove-that-Q-1-Q-1-7-3-5-85-38-5-

Question Number 72332 by aliesam last updated on 27/Oct/19 $${let}\:{Q}=\frac{\mathrm{1}+{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:.\:{tan}\left(\frac{\pi}{\mathrm{10}}\right)}{\mathrm{1}−{tan}\left(\frac{\pi}{\mathrm{8}}\right).{tan}\left(\frac{\pi}{\mathrm{10}}\right)} \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$\: \\ $$$$\frac{{Q}−\mathrm{1}}{{Q}+\mathrm{1}}=\sqrt{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}−\sqrt{\mathrm{85}−\mathrm{38}\sqrt{\mathrm{5}}}} \\ $$$$ \\ $$ Answered by mind…