Question Number 6726 by Tawakalitu. last updated on 16/Jul/16 $${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$$ \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{16}^{{x}} \\ $$$$ \\ $$$${please}\:{help}\:{with}\:{workings}. \\ $$ Answered by sou1618 last…
Question Number 137799 by mnjuly1970 last updated on 06/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…..\:{mathematical}\:..\:…\:…\:{analysis}…. \\ $$$$\:\:\:\:\:\:\:{evaluate}\:::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\right)=? \\ $$$$ \\ $$ Answered…
Question Number 72260 by mathmax by abdo last updated on 26/Oct/19 $${let}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${calculate}\:\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{f}^{\left(\mathrm{10}\right)} \left({x}\right)\:{and}\:{f}^{\left(\mathrm{15}\right)} \left({x}\right) \\ $$$$\left.\mathrm{3}\right){calculate}\:{f}^{\left(\mathrm{10}\right)} \left(\mathrm{0}\right)\:{and}\:{f}^{\left(\mathrm{15}\right)} \left(\mathrm{0}\right) \\…
Question Number 6725 by Danilka last updated on 16/Jul/16 $${a}+{b}={c} \\ $$$${a}+{a}={ac} \\ $$$${c}−{a}={b} \\ $$$${b}+{b}={bc} \\ $$$${a}^{\mathrm{2}} +{b}={c}^{\mathrm{3}} \\ $$$${a}+{D}={b}^{\mathrm{2}} \\ $$$${b}+{D}={a}^{\mathrm{2}} \\ $$$${a}'{b}'+{D}={c}'{D}…
Question Number 6723 by Tawakalitu. last updated on 16/Jul/16 $${An}\:{MTN}\:{mask}\:{is}\:{erected}\:{at}\:{a}\:{point}\:{P}\:\:{in}\:{ilaro}\:{town}.\:{At}\:{a}\:{point} \\ $$$${B}\:{due}\:{west},\:{The}\:{angle}\:{of}\:{elevation}\:{of}\:{its}\:{top}\:{is}\:\beta\:{and}\:{at}\:{point}\: \\ $$$${C}\:{due}\:{south},\:{the}\:{angle}\:{of}\:{elevation}\:{is}\:\alpha.\:{With}\:{the}\:{aid}\:{of}\:{an}\: \\ $$$${appropriate}\:{diagam}.\:{show}\:{that}\:{the}\:{angle}\:{of}\:{elevation}\:{of}\:{the}\:{top} \\ $$$${from}\:{a}\:{point}\:{due}\:{south}\:{of}\:{B}\:{and}\:{due}\:{west}\:{of}\:{C}\:{is}\: \\ $$$$ \\ $$$${cot}^{−\mathrm{1}} \left[{cot}^{\mathrm{2}} \left(\beta\right)\:+\:{cot}^{\mathrm{2}} \left(\alpha\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}}…
Question Number 72259 by mhmd last updated on 26/Oct/19 $$\int{yz}\:{dx}\:+\int{xz}\:{dy}\:+\int{xy}\:{dz}\:\:\:\:{pleas}\:{sir}\:{help}\:{me}\:? \\ $$ Answered by MJS last updated on 26/Oct/19 $$…={yz}\int{dx}+{xz}\int{dy}+{xy}\int{dz}=\mathrm{3}{xyz} \\ $$$$\mathrm{all}\:\mathrm{variables}\:\neq\:\mathrm{the}\:\mathrm{integral}\:\mathrm{variable}\:\mathrm{are} \\ $$$$\mathrm{considered}\:\mathrm{as}\:\mathrm{constant}\:\mathrm{factors} \\…
Question Number 6722 by Rasheed Soomro last updated on 16/Jul/16 $${If}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{8789}=\mathrm{89} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{7690}=\mathrm{79} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{5478}=\mathrm{69} \\ $$$${then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{5230}=? \\ $$ Terms of…
Question Number 6716 by Tawakalitu. last updated on 15/Jul/16 $${Prove}\:{that}\:{the}\:{locus}\:{of}\:{a}\:{point}\:{which}\:{moves}\:{its}\:{distance}\:{from}\: \\ $$$${the}\:{point}\:\left(−{b},\:\mathrm{0}\right)\:{is}\:{p}\:{times}\:{its}\:{distance}\:{from}\:{the}\:{point}\:\left({b},\:\mathrm{0}\right)\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({p}^{\mathrm{2}} \:−\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right)\:−\:\mathrm{2}{b}\left({p}^{\mathrm{2}} \:+\:\mathrm{1}\right){x}\:=\:\mathrm{0} \\ $$$${Show}\:{that}\:{this}\:{locus}\:{is}\:{a}\:{circle}\:{and}\:{find}\:{its}\:{radius}. \\ $$ Answered by…
Question Number 72250 by aliesam last updated on 26/Oct/19 $${f}\left({x}\right)=\left({ax}+{b}\right){sin}\left({x}\right)+\left({cx}+{d}\right){cos}\left({x}\right) \\ $$$${and}\:\:\:\frac{{dy}}{{dx}}={xcos}\left({x}\right) \\ $$$${find}\:\:{a}\:,\:{b}\:,\:{c}\:,\:{d} \\ $$$$ \\ $$$$ \\ $$ Commented by kaivan.ahmadi last updated…
Question Number 6715 by Tawakalitu. last updated on 15/Jul/16 $${Solve}\:{the}\:{following}\:{equation}\:{for}\:\mathrm{0}\:<\:\Theta\:<\:\mathrm{360}^{{o}} \\ $$$${cosx}\:+\:{cos}\mathrm{3}{x}\:+\:{cos}\mathrm{5}{x}\:+\:{cos}\mathrm{7}{x}\:=\:\mathrm{0} \\ $$ Answered by Yozzii last updated on 16/Jul/16 $${We}\:{know}\:{the}\:{identity}\:{cosa}+{cosb}=\mathrm{2}{cos}\frac{{a}+{b}}{\mathrm{2}}{cos}\frac{{a}−{b}}{\mathrm{2}}\:{for}\:{a},{b}\in\mathbb{R}….\left(\mathrm{1}\right) \\ $$$${Let}\:{u}={cosx}+{cos}\mathrm{3}{x}+{cos}\mathrm{5}{x}+{cos}\mathrm{7}{x}. \\…