Question Number 137048 by mnjuly1970 last updated on 29/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:……..{advanced}\:\:…\:…\:…\:{calculus}……. \\ $$$$\:\:\:\:{evaluate}:::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\chi}=\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{2}} } {ln}\left({x}\right)=??? \\ $$$$\:\: \\ $$ Answered by…
Question Number 5978 by FilupSmith last updated on 08/Jun/16 $${f}\left(\mathrm{1}\right){f}\left(−\mathrm{1}\right)\leqslant\mathrm{0} \\ $$$$\mathrm{Is}\:\mathrm{this}\:\mathrm{true}? \\ $$$$\mathrm{When}\:\mathrm{is}\:\mathrm{this}\:\mathrm{not}\:\mathrm{true}? \\ $$ Commented by Yozzii last updated on 09/Jun/16 $${If}\:{x}\in\mathbb{R},\:{f}\left({x}\right)\in\mathbb{R}\:{is}\:{odd}\:\Rightarrow{f}\left({x}\right){f}\left(−{x}\right)=−\left({f}\left({x}\right)\right)^{\mathrm{2}} \leqslant\mathrm{0}…
Question Number 71513 by aliesam last updated on 16/Oct/19 Commented by kaivan.ahmadi last updated on 16/Oct/19 $$×\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}={lim}_{{x}\rightarrow+\infty} \frac{{x}^{\mathrm{2}} +\mathrm{2}}{\:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}= \\ $$$$\equiv{lim}_{{x}\rightarrow+\infty} \frac{{x}^{\mathrm{2}}…
Question Number 137045 by mohammad17 last updated on 29/Mar/21 Commented by mohammad17 last updated on 29/Mar/21 $${how}\:{can}\:{it}\:{solve}\:{this} \\ $$ Commented by mohammad17 last updated on…
Question Number 137047 by mohammad17 last updated on 29/Mar/21 Commented by mohammad17 last updated on 29/Mar/21 $$????? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 71508 by Cmr 237 last updated on 16/Oct/19 $$\mathrm{montrer}\:\mathrm{que}:\forall\mathrm{a},\mathrm{b}\in\mathbb{R}\:\mathrm{ona} \\ $$$$\mathrm{2}\mid\mathrm{ab}\mid\leqslant\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \\ $$$$\mathrm{Endeduire}\:\mathrm{que}\:\forall\mathrm{x}_{\mathrm{1}} ,…,\mathrm{x}_{\mathrm{n}} \in\mathbb{R}\:\mathrm{on}\:\mathrm{a}: \\ $$$$\left(\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mid\mathrm{x}_{\mathrm{i}} \mid\right)^{\mathrm{2}} \leqslant\mathrm{n}\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}}…
Question Number 71506 by ajfour last updated on 16/Oct/19 Commented by ajfour last updated on 16/Oct/19 $${Find}\:{location}\:{of}\:{center}\:{of}\:{mass} \\ $$$${of}\:{the}\:{arc}\:{of}\:{ring}. \\ $$ Answered by mr W…
Question Number 137037 by JulioCesar last updated on 29/Mar/21 Answered by mathmax by abdo last updated on 29/Mar/21 $$\mathrm{I}=\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{8}\right)^{\mathrm{2}} }\:\left(\mathrm{compolex}\:\mathrm{method}\right)\:\Rightarrow\mathrm{I}=\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{4}\right)^{\mathrm{2}} } \\…
Question Number 5966 by Kasih last updated on 07/Jun/16 $${equation}\:\left(\mathrm{1}\right)\:\mathrm{2}{A}+\mathrm{5}{B}+{C}+\mathrm{29}=\mathrm{0} \\ $$$${equation}\:\left(\mathrm{2}\right)\:\mathrm{9}{A}+\mathrm{6}{B}+{C}+\mathrm{117}=\mathrm{0} \\ $$$${equation}\:\left(\mathrm{3}\right)\:\mathrm{3}{A}−\mathrm{2}{B}+{C}+\mathrm{13}=\mathrm{0} \\ $$$${A}=…?\:{B}=…?\:{C}=…? \\ $$ Answered by Ashis last updated on 07/Jun/16…
Question Number 5965 by love math last updated on 07/Jun/16 $${log}_{\frac{\mathrm{1}}{\mathrm{2}}} \left({x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{12}\right)>{log}_{{x}+\mathrm{5}} \left({x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{12}\right) \\ $$ Commented by Yozzii last updated on 07/Jun/16 $$\frac{{lnu}}{{ln}\mathrm{0}.\mathrm{5}}>\frac{{lnu}}{{ln}\left({x}+\mathrm{5}\right)}\:\:\:\:\left({change}\:{of}\:{base}/{u}={x}^{\mathrm{2}}…